LEADER 05142nam 2200709 450 001 9910809891803321 005 20230617013600.0 010 $a3-11-089976-0 024 7 $a10.1515/9783110899764 035 $a(CKB)3390000000034267 035 $a(EBL)4008030 035 $a(SSID)ssj0000893440 035 $a(PQKBManifestationID)12441227 035 $a(PQKBTitleCode)TC0000893440 035 $a(PQKBWorkID)10906048 035 $a(PQKB)10599879 035 $a(MiAaPQ)EBC4008030 035 $a(DE-B1597)43622 035 $a(OCoLC)992454173 035 $a(DE-B1597)9783110899764 035 $a(Au-PeEL)EBL4008030 035 $a(CaPaEBR)ebr11074540 035 $a(CaONFJC)MIL806651 035 $a(OCoLC)905867420 035 $a(EXLCZ)993390000000034267 100 $a20160223h20032003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSelecta /$fHeinz Bauer ; edited by Herbert Heyer, Niels Jacob, Ivan Netuka 205 $aReprint 2012 210 1$aBerlin, [Germany] ;$aNew York, [New York] :$cWalter de Gruyter,$d2003. 210 4$d©2003 215 $a1 online resource (610 p.) 300 $aDescription based upon print version of record. 311 $a3-11-017350-6 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tPreface -- $tCurriculum vitae -- $tPh.D. students of Heinz Bauer -- $tContents -- $tThe work of Heinz Bauer in measure and integration / $rChatterji, S. D. -- $tThe work of Heinz Bauer in convexity theory / $rEdwards, D. A. -- $tThe work of Heinz Bauer in potential theory / $rNetuka, Ivan -- $tReguläre und singuläre Abbildungen eines distributiven Verbandes in einen vollständigen Vektorverband, welche der Funktionalgleichung f(x?y) + f(x?y) = f(x) + f(y) genügen [R3] -- $tÜber die Beziehungen einer abstrakten Theorie des Riemann-Integrals zur Theorie Radonscher Maße [R9] -- $tSur l'équivalence des théories de l'intégration selon N. Bourbaki et selon M. H. Stone [R10] -- $tMinimalstellen von Funktionen und Extremalpunkte [R13] -- $tKonservative Abbildungen lokal-kompakter Räume [R14] -- $tMinimalstellen von Funktionen und Extremalpunkte. II [R16] -- $t?ilovscher Rand und Dirichletsches Problem [R17] -- $tAxiomatische Behandlung des Dirichletschen Problems für elliptische und parabolische Differentialgleichungen [R19] -- $tWeiterführung einer axiomatischen Potentialtheorie ohne Kern (Existenz von Potentialen [R20] -- $tKennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge [R21] -- $tPropriétés fines des fonctions hyperharmoniques dans une théorie axiomatique du potentiel [R23] -- $tZum Cauchyschen und Dirichletschen Problem bei elliptischen und parabolischen Differentialgleichungen [R24] -- $tMesures avec une image donnée [R25] -- $tThe part metric in convex sets [R26] -- $tAn open mapping theorem for convex sets with only one part [R27] -- $tTheorems of Korovkin type for adapted spaces [R29] -- $tConvergence of monotone operators [R30] -- $tKorovkin approximation in C0(X) [R32] -- $tApproximation and abstract boundaries [S12] -- $tHalbgruppen und Resolventen in der Potentialtheorie [S15] -- $tHarmonic spaces - a survey [S21] -- $tHeat balls and Fulks measures [R34] -- $tSimplicial function spaces and simplexes [R35] -- $tFine boundary limits of harmonic and caloric functions [R36] -- $tSimplices in potential theory [S24] -- $tFine boundary limits and maximal sequences [R39] -- $tBehaviour of solutions of elliptic-parabolic differential equations at irregular boundary points [S26] -- $tAcknowledgements -- $tBibliography 330 $aHeinz Bauer (1928-2002) was one of the prominent figures in Convex Analysis and Potential Theory in the second half of the 20th century. The Bauer minimum principle and Bauer's work on Silov's boundary and the Dirichlet problem are milestones in convex analysis. Axiomatic potential theory owes him what is known by now as Bauer harmonic spaces. These Selecta collect more than twenty of Bauer's research papers including his seminal papers in Convex Analysis and Potential Theory. Above his research contributions Bauer is best known for his art of writing survey articles. Five of his surveys on different topics are reprinted in this volume. Among them is the well-known article Approximation and Abstract Boundary, for which he was awarded with the Chauvenet Price by the American Mathematical Association in 1980. 606 $aIntegrals, Generalized 606 $aMeasure theory 606 $aPotential theory (Mathematics) 606 $aConvex sets 615 0$aIntegrals, Generalized. 615 0$aMeasure theory. 615 0$aPotential theory (Mathematics) 615 0$aConvex sets. 676 $a515/.42 686 $aSK 430$2rvk 700 $aBauer$b Heinz$f1928-$01649817 702 $aHeyer$b Herbert 702 $aJacob$b Niels 702 $aNetuka$b Ivan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809891803321 996 $aSelecta$94069920 997 $aUNINA