LEADER 02664nam 2200553 450 001 9910809748903321 005 20230125183812.0 010 $a1-60650-865-2 035 $a(CKB)4330000000017414 035 $a(OCoLC)939718452 035 $a(CaBNvSL)swl00405899 035 $a(MiAaPQ)EBC4389023 035 $a(Au-PeEL)EBL4389023 035 $a(CaPaEBR)ebr11152410 035 $a(CaONFJC)MIL832653 035 $a(OCoLC)939262334 035 $a(EXLCZ)994330000000017414 100 $a20151209d2016 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aIntermediate calculus $emethods of integration /$fTunc Geveci 210 1$aNew York, [New York] (222 East 46th Street, New York, NY 10017) :$cMomentum Press,$d2016. 215 $a1 online resource (iv, 224 pages) $cillustrations 300 $aCo-published with Cognella Academic Publishing. 300 $aIncludes index. 327 $a1. Understanding the integration of parts -- Integration by parts for indefinite integrals -- Integration by parts for definite integrals -- Integration by parts for definite integrals -- 327 $a2. Indefinite integrals and rational functions -- Special cases -- Arbitrary rational functions -- 327 $a3. Using integrals for trigonometric and hyperbolic functions -- Products of sin(x) and cos(x) or sinh(x) and cosh(x) -- Special integrals that involve sin (mx) and cos (nx) -- Rational functions of sin(x) and cos(x) or sinh(x) and cosh(x) -- 327 $a4. Integrations using trigonometric and hyberbolic substitutions -- The substitution x = a sin (u) -- The substitution x = a sinh (u) -- The substitution x = a cosh (u) -- 327 $a5. Approximations in numerical integration -- Riemann sums -- The trapezoid rule -- Simpson's rule -- The derivation of Simpson's rule -- 327 $a6. Improper integrals: unbounded intervals and discontinuities -- Improper integrals on unbounded intervals -- Improper integrals that involve discontinuous functions -- 327 $a7. Improper integrals: using convergence tests -- Improper integrals on unbounded intervals -- Improper integrals that involve discontinuous functions -- 327 $aIndex. 606 $aCalculus 606 $aFractional calculus 608 $aLibros electronicos. 615 0$aCalculus. 615 0$aFractional calculus. 676 $a515 700 $aGeveci$b Tunc.$0755794 801 0$bFINmELB 801 1$bFINmELB 906 $aBOOK 912 $a9910809748903321 996 $aIntermediate calculus$93918925 997 $aUNINA