LEADER 02109nam 2200505 450 001 9910809748503321 005 20200520144314.0 010 $a1-60650-881-4 035 $a(CKB)4330000000017422 035 $a(OCoLC)939718529 035 $a(CaBNvSL)swl00405907 035 $a(MiAaPQ)EBC4389030 035 $a(Au-PeEL)EBL4389030 035 $a(CaPaEBR)ebr11152417 035 $a(OCoLC)939262341 035 $a(EXLCZ)994330000000017422 100 $a20151209d2016 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aAdvanced calculus $evector analysis /$fTunc Geveci 210 1$aNew York, [New York] (222 East 46th Street, New York, NY 10017) :$cMomentum Press,$d2016. 215 $a1 online resource (70 pages) $cillustrations 300 $aCo-published with Cognella Academic Publishing. 300 $aIncludes index. 327 $a1. Understanding vector fields, divergence, and curl vector fields -- The divergence and curl of a vector field -- 327 $a2. Understanding line integrals -- The integral of a scalar function with respect to arc length -- The line integral of a vector field in the plane -- The line integral as an integral with respect to arc length -- The differential form notation -- Curves in R3 -- Precise definitions and proofs -- 327 $a3. Conservative vector fields -- The fundamental theorem for line integrals -- Conditions for a field to be conservative -- 327 $a4. Parametrized surfaces -- Parametrized surfaces -- Normal vectors, tangent planes and orientation -- The orientation of a surface and an expression for the normal vector (optional) -- 327 $aIndex. 606 $aCalculus 606 $aVector analysis 608 $aLibros electronicos. 615 0$aCalculus. 615 0$aVector analysis. 676 $a515 700 $aGeveci$b Tunc.$0755794 801 0$bFINmELB 801 1$bFINmELB 906 $aBOOK 912 $a9910809748503321 996 $aAdvanced calculus$93941657 997 $aUNINA