LEADER 05336nam 2200673Ia 450 001 9910809712503321 005 20200520144314.0 010 $a1-282-55153-1 010 $a9786612551536 010 $a0-470-68889-0 010 $a0-470-68888-2 035 $a(CKB)2670000000019337 035 $a(EBL)534000 035 $a(OCoLC)632157486 035 $a(SSID)ssj0000443790 035 $a(PQKBManifestationID)11293195 035 $a(PQKBTitleCode)TC0000443790 035 $a(PQKBWorkID)10461473 035 $a(PQKB)10591030 035 $a(MiAaPQ)EBC534000 035 $a(Au-PeEL)EBL534000 035 $a(CaPaEBR)ebr10388355 035 $a(CaONFJC)MIL255153 035 $a(OCoLC)464582638 035 $a(FINmELB)ELB179066 035 $a(EXLCZ)992670000000019337 100 $a20100105d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUnified theory of concrete structures /$fThomas Hsu and Y.L. Mo 205 $a2nd ed. 210 $aChichester, West Sussex, U.K. ;$aHoboken, N.J. $cWiley$dc2010 215 $a1 online resource (520 p.) 300 $aIncludes index. 311 $a0-470-68874-2 327 $aUNIFIED THEORY OF CONCRETE STRUCTURES; Contents; About the Authors; Preface; Instructors' Guide; 1 Introduction; 1.1 Overview; 1.2 Structural Engineering; 1.2.1 Structural Analysis; 1.2.2 Main Regions vs Local Regions; 1.2.3 Member and Joint Design; 1.3 Six Component Models of the Unified Theory; 1.3.1 Principles and Applications of the Six Models; 1.3.2 Historical Development of Theories for Reinforced Concrete; 1.4 Struts-and-ties Model; 1.4.1 General Description; 1.4.2 Struts-and-ties Model for Beams; 1.4.3 Struts-and-ties Model for Knee Joints; 1.4.4 Comments 327 $a2 Equilibrium (Plasticity) Truss Model 2.1 Basic Equilibrium Equations; 2.1.1 Equilibrium in Bending; 2.1.2 Equilibrium in Element Shear; 2.1.3 Equilibrium in Beam Shear; 2.1.4 Equilibrium in Torsion; 2.1.5 Summary of Basic Equilibrium Equations; 2.2 Interaction Relationships; 2.2.1 Shear-Bending Interaction; 2.2.2 Torsion-Bending Interaction; 2.2.3 Shear-Torsion-Bending Interaction; 2.2.4 Axial Tension-Shear-Bending Interaction; 2.3 ACI Shear and Torsion Provisions; 2.3.1 Torsional Steel Design; 2.3.2 Shear Steel Design; 2.3.3 Maximum Shear and Torsional Strengths 327 $a2.3.4 Other Design Considerations 2.3.5 Design Example; 2.4 Comments on the Equilibrium (Plasticity) Truss Model; 3 Bending and Axial Loads; 3.1 Linear Bending Theory; 3.1.1 Bernoulli Compatibility Truss Model; 3.1.2 Transformed Area for Reinforcing Bars; 3.1.3 Bending Rigidities of Cracked Sections; 3.1.4 Bending Rigidities of Uncracked Sections; 3.1.5 Bending Deflections of Reinforced Concrete Members; 3.2 Nonlinear Bending Theory; 3.2.1 Bernoulli Compatibility Truss Model; 3.2.2 Singly Reinforced Rectangular Beams; 3.2.3 Doubly Reinforced Rectangular Beams; 3.2.4 Flanged Beams 327 $a3.2.5 Moment-Curvature (M-?) Relationships 3.3 Combined Bending and Axial Load; 3.3.1 Plastic Centroid and Eccentric Loading; 3.3.2 Balanced Condition; 3.3.3 Tension Failure; 3.3.4 Compression Failure; 3.3.5 Bending-Axial Load Interaction; 3.3.6 Moment-Axial Load-Curvature (M-N- ?) Relationship; 4 Fundamentals of Shear; 4.1 Stresses in 2-D Elements; 4.1.1 Stress Transformation; 4.1.2 Mohr Stress Circle; 4.1.3 Principal Stresses; 4.2 Strains in 2-D Elements; 4.2.1 Strain Transformation; 4.2.2 Geometric Relationships; 4.2.3 Mohr Strain Circle; 4.2.4 Principle Strains 327 $a4.3 Reinforced Concrete 2-D Elements 4.3.1 Stress Condition and Crack Pattern in RC 2-D Elements; 4.3.2 Fixed Angle Theory; 4.3.3 Rotating Angle Theory; 4.3.4 'Contribution of Concrete' (Vc); 4.3.5 Mohr Stress Circles for RC Shear Elements; 5 Rotating Angle Shear Theories; 5.1 Stress Equilibrium of RC 2-D Elements; 5.1.1 Transformation Type of Equilibrium Equations; 5.1.2 First Type of Equilibrium Equations; 5.1.3 Second Type of Equilibrium Equations; 5.1.4 Equilibrium Equations in Terms of Double Angle; 5.1.5 Example Problem 5.1 Using Equilibrium (Plasticity) Truss Model 327 $a5.2 Strain Compatibility of RC 2-D Elements 330 $aUnified Theory of Concrete Structures develops an integrated theory that encompasses the various stress states experienced by both RC & PC structures under the various loading conditions of bending, axial load, shear and torsion. Upon synthesis, the new rational theories replace the many empirical formulas currently in use for shear, torsion and membrane stress. The unified theory is divided into six model components: a) the struts-and-ties model, b) the equilibrium (plasticity) truss model, c) the Bernoulli compatibility truss model, d) the Mohr compatibility truss model, e) the 606 $aReinforced concrete construction 606 $aConcrete construction 615 0$aReinforced concrete construction. 615 0$aConcrete construction. 676 $a624.1/8341 700 $aHsu$b Thomas T. C$g(Thomas Tseng Chuang),$f1933-$0288815 701 $aMo$b Y. L$01686857 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809712503321 996 $aUnified theory of concrete structures$94099740 997 $aUNINA