LEADER 01711nam 2200553 450 001 9910809693003321 005 20240131175544.0 010 $a1-315-29069-3 010 $a1-315-29067-7 035 $a(CKB)3710000000865358 035 $a(MiAaPQ)EBC4693130 035 $a(Au-PeEL)EBL4693130 035 $a(CaPaEBR)ebr11269088 035 $a(CaONFJC)MIL955780 035 $a(OCoLC)959150789 035 $a(OCoLC)999706561 035 $a(FINmELB)ELB139457 035 $a(EXLCZ)993710000000865358 100 $a20160930h20032003 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aPublic broadcasting and the public interest /$fMichael P. McCauley [and three others] 210 1$aLondon, [England] ;$aNew York :$cRoutledge,$d2003. 210 4$d©2003 215 $a1 online resource (301 pages) 311 $a0-7656-0990-8 320 $aIncludes bibliographical references at the end of each chapters and index. 606 $aPublic broadcasting$zUnited States 606 $aBroadcasting policy$zUnited States 606 $aPublic interest$zUnited States 606 $aPolitical participation$zUnited States 606 $aDemocracy$zUnited States 615 0$aPublic broadcasting 615 0$aBroadcasting policy 615 0$aPublic interest 615 0$aPolitical participation 615 0$aDemocracy 676 $a384.54/0973 702 $aMcCauley$b Michael P.$f1958- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809693003321 996 $aPublic broadcasting and the public interest$93926115 997 $aUNINA LEADER 02427nam0 22005773i 450 001 VAN0249488 005 20230531092741.322 017 70$2N$a9783030331436 100 $a20220901d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aMeasure, Integration & Real Analysis$fSheldon Axler 210 $aCham$cSpringer$d2020 215 $axviii, 411 p.$cill.$d24 cm 410 1$1001VAN0023579$12001 $aGraduate texts in mathematics$1210 $aNew York [etc.]$cSpringer$v282 500 1$3VAN0249489$aMeasure, integration & real analysis$92169569 606 $a46-XX$xFunctional analysis [MSC 2020]$3VANC019764$2MF 606 $a26-XX$xReal functions [MSC 2020]$3VANC019778$2MF 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a28-XX$xMeasure and integration [MSC 2020]$3VANC019878$2MF 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 610 $aAbstract measure$9KW:K 610 $aBanach spaces$9KW:K 610 $aFourier analysis$9KW:K 610 $aFourier series$9KW:K 610 $aFourier transform$9KW:K 610 $aHahn?Banach Theorem$9KW:K 610 $aHilbert spaces$9KW:K 610 $aHölder?s Inequality$9KW:K 610 $aLebesgue Differentiation Theorem$9KW:K 610 $aLebesgue Integration$9KW:K 610 $aMeasure Theory$9KW:K 610 $aProduct measures$9KW:K 610 $aReal analysis$9KW:K 610 $aRiemann integration$9KW:K 610 $aRiesz representation theorem$9KW:K 610 $aSigned and complex measures$9KW:K 610 $aSingular value decomposition$9KW:K 610 $aSpectral Theorem$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aAxler$bSheldon$3VANV040868$059614 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-33143-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0249488 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4748 $e08eMF4748 20220901 996 $aMeasure, Integration & Real Analysis$92169569 997 $aUNICAMPANIA