LEADER 06305nam 22006614a 450 001 9910809613203321 005 20200520144314.0 010 $a1-59693-444-1 035 $a(CKB)2560000000014990 035 $a(EBL)946542 035 $a(OCoLC)796382985 035 $a(SSID)ssj0000423144 035 $a(PQKBManifestationID)11272654 035 $a(PQKBTitleCode)TC0000423144 035 $a(PQKBWorkID)10440217 035 $a(PQKB)10494546 035 $a(Au-PeEL)EBL946542 035 $a(CaPaEBR)ebr10393280 035 $a(CaBNVSL)mat09100092 035 $a(IEEE)9100092 035 $a(MiAaPQ)EBC946542 035 $a(PPN)174130457 035 $a(EXLCZ)992560000000014990 100 $a20100605d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMicrofluidics for biotechnology /$fJean Berthier, Pascal Silberzan 205 $a2nd ed. 210 $aBoston $cArtech House$dc2010 215 $a1 online resource (502 p.) 225 1 $aIntegrated microsystems series 300 $aDescription based upon print version of record. 311 $a1-59693-443-3 320 $aIncludes bibliographical references and index. 327 $aMicrofluidics for Biotechnology Second Edition; Contents; Preface; Acknowledgements; Chapter 1 Dimensionless Numbers in Microfluidics; 1.1 Introduction; 1.2 Microfluidic Scales; 1.3 Buckingham's Pi Theorem; 1.4 Scaling Numbers and Characteristic Scales; 1.4.1 Micro- to Nanoscales; 1.4.2 Hydrodynamic Characteristic Times; 1.4.3 Newtonian Fluids; 1.4.4 Non-Newtonian Fluids; 1.4.5 Droplets and Digital Microfluidics; 1.4.6 Multiphysics; 1.4.7 Specific Dimensionless Numbers and Composite Groups; References; Chapter 2 Microflows; 2.1 Introduction 327 $a2.1.1 On the Importance of Microfluidics in Biotechnology2.1.2 From Single Continuous Flow to Droplets; 2.2 Single-Phase Microflows; 2.2.1 Navier-Stokes (NS) Equations; 2.2.2 Non-Newtonian Rheology; 2.2.3 Laminarity of Microflows; 2.2.4 Stokes Equation; 2.2.5 Hagen-Poiseuille Flow; 2.2.6 Pressure Drop and Friction Factor; 2.2.7 Bernoulli's Approach; 2.2.8 Modeling: Lumped Parameters Model; 2.2.9 Microfluidic Networks: Worked Example 1-Microfluidic Flow Inside a Microneedle; 2.2.10 Microfluidic Networks: Worked Example 2-Plasma Extraction from Blood 327 $a2.2.11 Hydrodynamic Entrance Length: Establishment of the Flow2.2.12 Distributing a Uniform Flow into a Microchamber; 2.2.13 The Example of a Protein Reactor; 2.2.14 Recirculation Regions; 2.2.15 Inertial Effects at Medium Reynolds Numbers: Dean Flow; 2.2.16 Microflows in Flat Channels: Helle-Shaw Flows; 2.3 Conclusion; References; Chapter 3 Interfaces, Capillarity, and Microdrops; 3.1 Introduction; 3.2 Interfaces and Surface Tension; 3.2.1 The Notion of Interface; 3.2.2 Surface Tension; 3.3 Laplace Law and Applications; 3.3.1 Curvature Radius and Laplace's Law 327 $a3.3.2 Examples of the Application of Laplace's Law3.4 Partial or Total Wetting; 3.5 Contact Angle: Young's Law; 3.5.1 Young's Law; 3.5.2 Young's Law for Two Liquids and a Solid; 3.5.3 Generalization of Young's Law-Neumann's Construction; 3.6 Capillary Force and Force on a Triple Line; 3.6.1 Introduction; 3.6.2 Capillary Force Between Two Parallel Plates; 3.6.3 Capillary Rise in a Tube-Jurin's Law; 3.6.4 Capillary Rise Between Two Parallel Vertical Plates; 3.6.5 Capillary Pumping; 3.6.6 Force on a Triple Line; 3.6.7 Examples of Capillary Forces in Microsystems; 3.7 Pinning and Canthotaxis 327 $a3.7.1 Theory3.7.2 Pinning of an Interface Between Pillars; 3.7.3 Droplet Pinning on a Surface Defect; 3.7.4 Pinning of a Microdroplet-Quadruple Contact Line; 3.7.5 Pinning in Microwells; 3.8 Microdrops; 3.8.1 Shape of Microdrops; 3.8.2 Drops on Inhomogeneous Surfaces; 3.9 Conclusions; References; Chapter 4 Digital, Two-Phase, and Droplet Microfluidics; 4.1 Introduction; 4.2 Digital Microfluidics; 4.2.1 Introduction; 4.2.2 Theory of Electrowetting; 4.2.3 EWOD Microsystems; 4.2.4 Conclusion; 4.3 Multiphase Microflows; 4.3.1 Introduction; 4.3.2 Droplet and Plug Flow in Microchannels 330 3 $aThe application of microfluidics to biotechnology is an exciting new area that has already begun to revolutionize how researchers study and manipulate macromolecules like DNA, proteins and cells in vitro and within living organisms. Now in a newly revised and expanded second edition, the Artech House bestseller, Microfluidics for Biotechnology brings you to the cutting edge of this burgeoning field. Among the numerous updates, the second edition features three entirely new chapters on: non-dimensional numbers in microfluidics; interface, capillarity and microdrops; and digital, two-phase and droplet microfluidics. Presenting an enlightening balance of numerical approaches, theory, and experimental examples, this book provides a detailed look at the mechanical behavior of the different types of micro/nano particles and macromolecules that are used in biotechnology. You gain a solid understanding of microfluidics theory and the mechanics of microflows and microdrops. The book examines the diffusion of species and nanoparticles, including continuous flow and discrete Monte-Carlo methods. This unique volume describes the transport and dispersion of biochemical species and particles. You learn how to model biochemical reactions, including DNA hybridization and enzymatic reactions. Moreover, the book helps you master the theory, applications, and modeling of magnetic beads behavior and provides an overview of self-assembly and magnetic composite. Other key topics include the electric manipulation of micro/nanoparticles and macromolecules and the experimental aspects of biological macromolecule manipulation.$cPublisher abstract. 410 0$aArtech House integrated microsystems series. 606 $aBiotechnology 606 $aMicrofluidics 615 0$aBiotechnology. 615 0$aMicrofluidics. 676 $a660.6 700 $aBerthier$b Jean$f1952-$01622764 701 $aSilberzan$b Pascal$01622765 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809613203321 996 $aMicrofluidics for biotechnology$93956799 997 $aUNINA