LEADER 01308nam0 22003131i 450 001 VAN0032511 005 20120706120510.169 010 $a88-238-0681-X 020 $aIT$b2002 1900 100 $a20050222d2001 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aCapitale di debito e sviluppo dell'impresa$fAlberto Dessy 210 $aMilano$cEGEA$d2001 215 $a175 p.$d24 cm. 410 1$1001VAN0090333$12001 $aBiblioteca dell?economia d?azienda. Finanza aziendale$1210 $aMilano$cEGEA. 620 $dMilano$3VANL000284 676 $a658.1526$v21 700 1$aDessy$bAlberto$3VANV008548$0438117 712 $aEgea $3VANV107924$4650 801 $aIT$bSOL$c20230922$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$1IT-CE0106$2VAN03 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN0032511 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XX.Cg.92 $e00 19241 20050222 950 $aBIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03PREST IIAj158 $e03 30248 20120706 996 $aCapitale di debito e sviluppo dell'impresa$91103054 997 $aUNICAMPANIA LEADER 06185nam 2200577 450 001 9910809596003321 005 20200520144314.0 010 $a0-12-397283-3 035 $a(CKB)2660000000011233 035 $a(EBL)4181265 035 $a(Au-PeEL)EBL4181265 035 $a(CaPaEBR)ebr11125445 035 $a(CaONFJC)MIL875917 035 $a(OCoLC)930703165 035 $a(CaSebORM)9780123972835 035 $a(MiAaPQ)EBC4181265 035 $a(EXLCZ)992660000000011233 100 $a20160102h20162016 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMultiscale modeling for process safety applications /$fArnab Chakrabarty, Sam Mannan, Tahir Cagin 205 $a1st edition 210 1$aAmsterdam :$cElsevier,$d[2016] 210 4$dİ2016 215 $a1 online resource (446 p.) 300 $aDescription based upon print version of record. 311 $a0-12-396975-1 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Multiscale Modeling for Process Safety Applications; Copyright; Contents; Preface; Acknowledgments; 1 - INTRODUCTION; REFERENCES; 2 - PROCESS SAFETY; 2.1 FIRE; 2.1.1 THE FIRE TRIANGLE; 2.1.2 IGNITION PHENOMENA; 2.1.3 FLAMMABILITY LIMITS OF GASES AND VAPORS; 2.1.4 TYPES OF FIRES; 2.1.4.1 Diffusion fires; Jet fires; Natural fires; Pool fires; Fireballs; 2.1.4.2 Premixed fires; Flash fires; 2.1.5 FIRE RISK ANALYSIS; 2.2 EXPLOSION; 2.2.1 DEFLAGRATION AND DETONATION; 2.2.2 EXPLOSION ENERGY; 2.2.2.1 Energy of chemical explosions; 2.2.2.2 Energy of mechanical explosions 327 $aBrode's equation (Brode, 1959)Isentropic expansion; Isothermal expansion; Thermodynamic availability; 2.2.3 EXPLOSION TYPES; 2.2.3.1 Vapor cloud explosion; 2.2.3.2 Boiling liquid expanding vapor explosion; 2.2.3.3 Dust explosion; Explosibility classification; Minimum ignition temperature; Minimum explosive concentration; Minimum ignition energy; Explosion pressure characteristics; 2.2.4 EXPLOSION PREVENTION; 2.2.4.1 Inerting; Vacuum purging; Pressure purging; Combined pressure-vacuum purging; Sweep-through purging; 2.2.4.2 Controlling static electricity; 2.2.4.3 Ventilation; 2.3 TOXIC EFFECTS 327 $a2.3.1 HOW TOXIC SUBSTANCES ENTER THE ORGANISM2.3.2 PARTICLE CLASSIFICATION; 2.3.2.1 Dimensionality; 2.3.2.2 Particle morphology; 2.3.2.3 Particle composition; 2.3.2.4 Particle uniformity and agglomeration; 2.3.3 TOXIC SUBSTANCES; 2.3.4 TOXICITY ASSESSMENT; 2.3.4.1 Noncancer effect; 2.3.4.2 Cancer effect; 2.3.5 RISK ASSESSMENT; 2.3.6 HYGIENE STANDARDS; 2.3.6.1 ERPG; 2.3.6.2 IDLH; 2.3.6.3 EEGL; 2.3.6.4 PEL; 2.3.6.5 TXDS; 2.3.6.6 RMP; 2.3.7 HAZARD ASSESSMENT METHODOLOGY; 2.3.8 SOURCE TERM; 2.3.9 GAS DISPERSION; 2.3.9.1 Workbooks/correlations; 2.3.9.2 Integral models; 2.3.9.3 Shallow layer models 327 $a2.3.9.4 Computational fluid dynamics2.3.10 CONCENTRATION FLUCTUATIONS; 2.3.11 MITIGATION: TERRAIN, BARRIERS, SPRAYS, SHELTER, AND EVACUATION; 2.3.12 PLANT LAYOUT; 2.3.13 COMPUTER AIDS; 2.4 PRESENT APPROACH TO PROCESS SAFETY; 2.4.1 RISK AND HAZARD; 2.4.2 METHODOLOGY IN RISK ASSESSMENT; 2.4.2.1 Nodes in risk assessment; 2.4.2.2 Teams and information required for a risk assessment; 2.4.3 QUANTITATIVE RISK ASSESSMENT; 2.4.4 SCALABILITY IN RISK ASSESSMENT METHODOLOGIES; 2.4.5 PROBABILITY BASED APPROACHES; 2.4.5.1 Fault tree analysis; 2.4.5.2 Event tree analysis; 2.4.5.3 Bow-tie plots 327 $a2.4.5.4 Failure modes and effects analysis2.4.5.5 Bayesian networks; 2.4.6 CONSEQUENCE-BASED APPROACHES; 2.4.6.1 Fire consequence modeling; Impact on personnel; Impact on structures; Impact on Electrical Equipment; Impact on the environment; 2.4.6.2 Probit analysis: dose-response modeling; 2.4.7 QUALITATIVE AND SEMI-QUANTITATIVE APPROACHES; 2.4.7.1 Layer of protection analysis; 2.4.7.2 Risk matrix; 2.4.7.3 HAZOP; 2.4.7.4 What-if analysis; 2.4.7.5 Checklist; 2.4.7.6 What-if/checklist; 2.4.7.7 Dow fire and explosion index; 2.5 PROCESS SAFETY CHALLENGES AND LOOKING AT THE FUTURE 327 $a2.5.1 INTRODUCTION 330 $a Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader 606 $aManufacturing processes$xSafety measures 606 $aChemical processes$xSafety measures 615 0$aManufacturing processes$xSafety measures. 615 0$aChemical processes$xSafety measures. 676 $a660.28040013 700 $aChakrabarty$b Arnab$01689844 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809596003321 996 $aMultiscale modeling for process safety applications$94065194 997 $aUNINA LEADER 02431nam0 2200481 i 450 001 VAN0102829 005 20220208120138.714 017 70$2N$a978-1-4614-8893-4 100 $a20151008d2014 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aTopological methods in the study of boundary value problems$fPablo Amster 210 $aNew York$cSpringer$d2014 215 $aXVI, 226 p.$cill.$d24 cm 410 1$1001VAN0024506$12001 $aUniversitext$1210 $aBerlin [etc]$cSpringer$d1930- 500 1$3VAN0239687$aTopological methods in the study of boundary value problems$9821875 606 $a35J25$xBoundary value problems for second-order elliptic equations [MSC 2020]$3VANC019840$2MF 606 $a37C25$xFixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020]$3VANC020266$2MF 606 $a47H10$xFixed-point theorems [MSC 2020]$3VANC020267$2MF 606 $a47H11$xDegree theory for nonlinear operators [MSC 2020]$3VANC022289$2MF 606 $a34C25$xPeriodic solutions to ordinary differential equation [MSC 2020]$3VANC022291$2MF 606 $a46Txx$xNonlinear functional analysis [MSC 2020]$3VANC026835$2MF 606 $a47J25$xIterative procedures involving nonlinear operators [MSC 2020]$3VANC029081$2MF 606 $a34B15$xNonlinear boundary value problems for ordinary differential equations [MSC 2020]$3VANC029108$2MF 610 $aBoundary Value Problems$9KW:K 610 $aFixed point theorems$9KW:K 610 $aNonlinear analysis$9KW:K 610 $aOrdinary differential equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aTopological degree$9KW:K 610 $aTopological methods$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aAmster$bPablo$3VANV080252$0524651 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-1-4614-8893-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0102829 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 4509 $e15EB 4509 20191106 996 $aTopological methods in the study of boundary value problems$9821875 997 $aUNICAMPANIA