LEADER 03412nam 2200613 450 001 9910809225203321 005 20220818074019.0 010 $a0-8218-8158-2 010 $a0-8218-4345-1 035 $a(CKB)3240000000070004 035 $a(EBL)3113193 035 $a(SSID)ssj0000629269 035 $a(PQKBManifestationID)11359700 035 $a(PQKBTitleCode)TC0000629269 035 $a(PQKBWorkID)10730516 035 $a(PQKB)11656478 035 $a(MiAaPQ)EBC3113193 035 $a(RPAM)15412986 035 $a(PPN)197108067 035 $a(EXLCZ)993240000000070004 100 $a20080814h20092009 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCommunicating mathematics $ea conference in honor of Joseph A. Gallian's 65th birthday, July 16-19, 2007, University of Minnesota, Duluth, Minnesota /$fTimothy Y. Chow, Daniel C. Isaksen, editors 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2009] 210 4$d©2009 215 $a1 online resource (251 p.) 225 1 $aContemporary mathematics,$v479$x0271-4132 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references. 327 $aIntro -- Contents -- Preface--A journey of discovery: Orthogonal matrices and wireless communications--Probabilistic expectations on unstructured spaces--A beginner's guide to forcing--Higher order necessary conditions in smooth constrained optimization--Hamiltonian paths and hyperbolic patterns--When graph theory meets knot theory--Can an asymmetric power structure always be achieved?--McKay's canonical graph labeling algorithm--A multiplicative deformation of the Möbius function for the poset of partitions of a multiset -- Communicating, mathematics, communicating mathematics : Joe Gallian style -- Fair allocation methods for coalition games -- Sums-of-squares formulas -- Product-free subsets of groups, then and now -- Generalizations of product-free subsets -- What is a superrigid subgroup? -- 1. Rigidity of Linkages -- 2. The Analogous Notion in Group Theory -- 3. Definition of Superrigidity -- 4. Examples of Superrigid Subgroups -- 5. Why Superrigidity Implies Arithmeticity -- Further Reading -- Averaging points two at a time -- Vertex algebras as twisted bi-algebras: On a theorem of Borcherds -- 1. Introduction -- 2. Algebraic Preliminaries -- 3. Vertex Algebras -- 4. Borcherds' theorem -- 5. Converse to Borcherds's theorem -- 6. Examples -- References. 410 0$aContemporary mathematics,$v. 479.$x0271-4132 606 $aCommunication in mathematics$zUnited States$vCongresses 606 $aMathematics$xResearch$zUnited States$vCongresses 606 $aMathematics$xStudy and teaching$zUnited States$vCongresses 606 $aMathematics$zUnited States$xData processing$vCongresses 615 0$aCommunication in mathematics 615 0$aMathematics$xResearch 615 0$aMathematics$xStudy and teaching 615 0$aMathematics$xData processing 676 $a510 702 $aGallian$b Joseph A. 702 $aChow$b Timothy Y.$f1969- 702 $aIsaksen$b Daniel C.$f1972- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809225203321 996 $aCommunicating mathematics$9782494 997 $aUNINA