LEADER 04159nam 2200625Ia 450 001 9910809091703321 005 20200520144314.0 010 $a1-281-93572-7 010 $a9786611935726 010 $a981-279-531-6 035 $a(CKB)1000000000537840 035 $a(DLC)2005297918 035 $a(StDuBDS)AH24685177 035 $a(SSID)ssj0000182338 035 $a(PQKBManifestationID)11169833 035 $a(PQKBTitleCode)TC0000182338 035 $a(PQKBWorkID)10172201 035 $a(PQKB)10942573 035 $a(MiAaPQ)EBC1681610 035 $a(WSP)00005222 035 $a(Au-PeEL)EBL1681610 035 $a(CaPaEBR)ebr10255562 035 $a(CaONFJC)MIL193572 035 $a(OCoLC)815752540 035 $a(EXLCZ)991000000000537840 100 $a20030806d2003 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to 2-spinors in general relativity /$fPeter O'Donnell 205 $a1st ed. 210 $aSingapore ;$aRiver Edge, NJ $cWorld Scientific$dc2003 215 $a1 online resource (xii, 191 p. ) $cill 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-238-307-7 320 $aIncludes bibliographical references (p. 181-184) and index. 327 $a1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises. 330 $aThis book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter. 517 3 $aIntroduction to two-spinors in general relativity 517 3 $a2-spinors in general relativity 606 $aGeneral relativity (Physics) 606 $aSpinor analysis 615 0$aGeneral relativity (Physics) 615 0$aSpinor analysis. 676 $a530.15563 700 $aO'Donnell$b Peter J.$f1964-$01684432 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809091703321 996 $aIntroduction to 2-spinors in general relativity$94055927 997 $aUNINA