LEADER 01014nam0-22003851i-450- 001 990002522250403321 005 20090702153754.0 010 $a3540510591 035 $a000252225 035 $aFED01000252225 035 $a(Aleph)000252225FED01 035 $a000252225 100 $a20090702d1989----km-y0itay50------ba 101 0 $aeng 102 $aDE 105 $ay-------001yy 200 1 $aBusiness cycle theory$fGunter Gabisch, Hans Walter Lorenz 205 $a2nd ed. 210 $aBerlin$cSpringer Verlag$d1989 215 $aix, 248 p.$d24 cm 225 1 $aUniversitext 610 0 $aEconomia 610 0 $aMetodi matematici per l'economia 676 $a330 700 1$aGabisch,$bGunter$0102732 702 1$aLorenz,$bHans-Walter 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002522250403321 952 $aMXX-A-106$b1151$fMAS 952 $aVI C 89$b9270$fFSPBC 959 $aMAS 959 $aFSPBC 996 $aBusiness cycle theory$9439347 997 $aUNINA LEADER 01361nam--2200421---450- 001 990005610140203316 005 20160927095000.0 010 $a0-214-16039-4 035 $a000561014 035 $aUSA01000561014 035 $a(ALEPH)000561014USA01 035 $a000561014 100 $a20160927d1968----km-y0itay50------ba 101 1 $aeng$crus 102 $aGB 105 $ac|||||||001yy 200 1 $aSelected essays on music$fVladimir Vasilevich Stasov$gtranslated by Florence Jonas$gintroduced by Gerald Abraham 210 $aLondon$cBarrie & Rockliff, The Cresset Press$d1968 215 $a202 p., 1 ritratto$d26 cm 606 0 $aMusica$yRussia$zSec. 19.$2BNCF 676 $a780.947 700 1$aSTASOV,$bVladimir Vasil?evi?$0718315 702 1$aJONAS,$bFlorence 702 1$aABRAHAM,$bGerald 801 0$aIT$bsalbc$gISBD 912 $a990005610140203316 951 $aXIII.3.D. 674$b519$cXIII.3.$d391213 959 $aBK 969 $aUMA 979 $c20121027$lUSA01$h1525 979 $c20121027$lUSA01$h1614 979 $aPATRY$b90$c20130226$lUSA01$h1646 979 $aANNAMARIA$b90$c20160927$lUSA01$h0916 979 $aANNAMARIA$b90$c20160927$lUSA01$h0921 979 $aANNAMARIA$b90$c20160927$lUSA01$h0934 979 $aANNAMARIA$b90$c20160927$lUSA01$h0950 996 $aSelected essays on music$91392941 997 $aUNISA LEADER 09224nam 2200745Ia 450 001 9910808716103321 005 20200520144314.0 010 $a9786612123047 010 $a9781282123045 010 $a1282123041 010 $a9780470714089 010 $a0470714085 010 $a9780470714072 010 $a0470714077 024 7 $a10.1002/9780470714089 035 $a(CKB)1000000000766498 035 $a(EBL)470306 035 $a(SSID)ssj0000354113 035 $a(PQKBManifestationID)11256478 035 $a(PQKBTitleCode)TC0000354113 035 $a(PQKBWorkID)10302427 035 $a(PQKB)10815223 035 $a(CaBNVSL)mat08040426 035 $a(IDAMS)0b00006485f0ed84 035 $a(IEEE)8040426 035 $a(Au-PeEL)EBL470306 035 $a(CaPaEBR)ebr10307685 035 $a(CaONFJC)MIL212304 035 $a(MiAaPQ)EBC470306 035 $a(OCoLC)352829722 035 $a(PPN)260752851 035 $a(Perlego)2758319 035 $a(EXLCZ)991000000000766498 100 $a20081212d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDistant speech recognition /$fMatthias Wolfel and John McDonough 205 $a1st ed. 210 $aChichester, West Sussex, U.K. $cWiley$dc2009 215 $a1 online resource (595 p.) 300 $aDescription based upon print version of record. 311 08$a9780470517048 311 08$a0470517042 320 $aIncludes bibliographical references and index. 327 $aForeword -- Preface -- 1 Introduction -- 1.1 Research and Applications in Academia and Industry -- 1.2 Challenges in Distant Speech Recognition -- 1.3 System Evaluation -- 1.4 Fields of Speech Recognition -- 1.5 Robust Perception -- 1.6 Organizations, Conferences and Journals -- 1.7 Useful Tools, Data Resources and Evaluation Campaigns -- 1.8 Organization of this Book -- 1.9 Principal Symbols used Throughout the Book -- 1.10 Units used Throughout the Book -- 2 Acoustics -- 2.1 Physical Aspect of Sound -- 2.2 Speech Signals -- 2.3 Human Perception of Sound -- 2.4 The Acoustic Environment -- 2.5 Recording Techniques and Sensor Configuration -- 2.6 Summary and Further Reading -- 2.7 Principal Symbols -- 3 Signal Processing and Filtering Techniques -- 3.1 Linear Time-Invariant Systems -- 3.2 The Discrete Fourier Transform -- 3.3 Short-Time Fourier Transform -- 3.4 Summary and Further Reading -- 3.5 Principal Symbols -- 4 Bayesian Filters -- 4.1 Sequential Bayesian Estimation -- 4.2 Wiener Filter -- 4.3 Kalman Filter and Variations -- 4.4 Particle Filters -- 4.5 Summary and Further Reading -- 4.6 Principal Symbols -- 5 Speech Feature Extraction -- 5.1 Short-Time Spectral Analysis -- 5.2 Perceptually Motivated Representation -- 5.3 Spectral Estimation and Analysis -- 5.4 Cepstral Processing -- 5.5 Comparison between Mel Frequency, Perceptual LP and warped MVDR Cepstral Coefficient Frontends -- 5.6 Feature Augmentation -- 5.7 Feature Reduction -- 5.8 Feature-Space Minimum Phone Error -- 5.9 Summary and Further Reading -- 5.10 Principal Symbols -- 6 Speech Feature Enhancement -- 6.1 Noise and Reverberation in Various Domains -- 6.2 Two Principal Approaches -- 6.3 Direct Speech Feature Enhancement -- 6.4 Schematics of Indirect Speech Feature Enhancement -- 6.5 Estimating Additive Distortion -- 6.6 Estimating Convolutional Distortion -- 6.7 Distortion Evolution -- 6.8 Distortion Evaluation -- 6.9 Distortion Compensation -- 6.10 Joint Estimation of Additive and Convolutional Distortions. 327 $a6.11 Observation Uncertainty -- 6.12 Summary and Further Reading -- 6.13 Principal Symbols -- 7 Search: Finding the Best Word Hypothesis -- 7.1 Fundamentals of Search -- 7.2 Weighted Finite-State Transducers -- 7.3 Knowledge Sources -- 7.4 Fast On-the-Fly Composition -- 7.5 Word and Lattice Combination -- 7.6 Summary and Further Reading -- 7.7 Principal Symbols -- 8 Hidden Markov Model Parameter Estimation -- 8.1 Maximum Likelihood Parameter Estimation -- 8.2 Discriminative Parameter Estimation -- 8.3 Summary and Further Reading -- 8.4 Principal Symbols -- 9 Feature and Model Transformation -- 9.1 Feature Transformation Techniques -- 9.2 Model Transformation Techniques -- 9.3 Acoustic Model Combination -- 9.4 Summary and Further Reading -- 9.5 Principal Symbols -- 10 Speaker Localization and Tracking -- 10.1 Conventional Techniques -- 10.2 Speaker Tracking with the Kalman Filter -- 10.3 Tracking Multiple Simultaneous Speakers -- 10.4 Audio-Visual Speaker Tracking -- 10.5 Speaker Tracking with the Particle Filter -- 10.6 Summary and Further Reading -- 10.7 Principal Symbols -- 11 Digital Filter Banks -- 11.1 Uniform Discrete Fourier Transform Filter Banks -- 11.2 Polyphase Implementation -- 11.3 Decimation and Expansion -- 11.4 Noble Identities -- 11.5 Nyquist(M) Filters -- 11.6 Filter Bank Design of De Haan et al -- 11.7 Filter Bank Design with the Nyquist(M) Criterion -- 11.8 Quality Assessment of Filter Bank Prototypes -- 11.9 Summary and Further Reading -- 11.10 Principal Symbols -- 12 Blind Source Separation -- 12.1 Channel Quality and Selection -- 12.2 Independent Component Analysis -- 12.3 BSS Algorithms based on Second-Order Statistics -- 12.4 Summary and Further Reading -- 12.5 Principal Symbols -- 13 Beamforming -- 13.1 Beamforming Fundamentals -- 13.2 Beamforming Performance Measures -- 13.3 Conventional Beamforming Algorithms -- 13.4 Recursive Algorithms -- 13.5 Nonconventional Beamforming Algorithms -- 13.6 Array Shape Calibration -- 13.7 Summary and Further Reading. 327 $a13.8 Principal Symbols -- 14 Hands On -- 14.1 Example Room Configurations -- 14.2 Automatic Speech Recognition Engines -- 14.3 Word Error Rate -- 14.4 Single-Channel Feature Enhancement Experiments -- 14.5 Acoustic Speaker-Tracking Experiments -- 14.6 Audio-Video Speaker-Tracking Experiments -- 14.7 Speaker-Tracking Performance vs Word Error Rate -- 14.8 Single-Speaker Beamforming Experiments -- 14.9 Speech Separation Experiments -- 14.10 Filter Bank Experiments -- 14.11 Summary and Further Reading -- Appendices -- A List of Abbreviations -- B Useful Background -- B.1 Discrete Cosine Transform -- B.2 Matrix Inversion Lemma -- B.3 Cholesky Decomposition -- B.4 Distance Measures -- B.5 Super-Gaussian Probability Density Functions -- B.6 Entropy -- B.7 Relative Entropy -- B.8 Transformation Law of Probabilities -- B.9 Cascade of Warping Stages -- B.10 Taylor Series -- B.11 Correlation and Covariance -- B.12 Bessel Functions -- B.13 Proof of the Nyquist / Shannon Sampling Theorem -- B.14 Proof of Equations (11.31 / 11.32) -- B.15 Givens Rotations -- B.16 Derivatives with Respect to Complex Vectors -- B.17 Perpendicular Projection Operators -- Bibliography -- Index. 330 $aA complete overview of distant automatic speech recognition The performance of conventional Automatic Speech Recognition (ASR) systems degrades dramatically as soon as the microphone is moved away from the mouth of the speaker. This is due to a broad variety of effects such as background noise, overlapping speech from other speakers, and reverberation. While traditional ASR systems underperform for speech captured with far-field sensors, there are a number of novel techniques within the recognition system as well as techniques developed in other areas of signal processing that can mitigate the deleterious effects of noise and reverberation, as well as separating speech from overlapping speakers. Distant Speech Recognitionpresents a contemporary and comprehensive description of both theoretic abstraction and practical issues inherent in the distant ASR problem. Key Features: *Covers the entire topic of distant ASR and offers practical solutions to overcome the problems related to it *Provides documentation and sample scripts to enable readers to construct state-of-the-art distant speech recognition systems *Gives relevant background information in acoustics and filter techniques, *Explains the extraction and enhancement of classification relevant speech features *Describes maximum likelihood as well as discriminative parameter estimation, and maximum likelihood normalization techniques *Discusses the use of multi-microphone configurations for speaker tracking and channel combination *Presents several applications of the methods and technologies described in this book *Accompanying website with open source software and tools to construct state-of-the-art distant speech recognition systems This reference will be an invaluable resource for researchers, developers, engineers and other professionals, as well as advanced students in speech technology, signal processing, acoustics, statistics and artificial intelligence fields. 606 $aAutomatic speech recognition 606 $aPattern perception 615 0$aAutomatic speech recognition. 615 0$aPattern perception. 676 $a006.4/54 700 $aWolfel$b Matthias$01117265 701 $aMcDonough$b John$g(John W.)$01671244 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808716103321 996 $aDistant speech recognition$94186845 997 $aUNINA