LEADER 05596nam 2200649 450 001 9910808589203321 005 20220504221721.0 010 $a0-323-35381-9 035 $a(CKB)2670000000602461 035 $a(EBL)1992707 035 $a(SSID)ssj0001560421 035 $a(PQKBManifestationID)16193560 035 $a(PQKBTitleCode)TC0001560421 035 $a(PQKBWorkID)14825343 035 $a(PQKB)11343064 035 $a(Au-PeEL)EBL1992707 035 $a(CaPaEBR)ebr11034717 035 $a(CaONFJC)MIL752683 035 $a(OCoLC)905997072 035 $a(MiAaPQ)EBC1992707 035 $a(EXLCZ)992670000000602461 100 $a20150402h20152015 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplication of nonlinear systems in nanomechanics and nanofluids $eanalytical methods and applications /$fDavood Domairry Ganji, Sayyid Habibollah Hashemi Kachapi 210 1$aAmsterdam :$cElsevier,$d[2015] 210 4$dİ2015 215 $a1 online resource (412 p.) 225 1 $aMicro and Nano Technologies 300 $aDescription based upon print version of record. 311 $a1-336-21397-3 311 $a0-323-35237-5 327 $aFront Cover; Application of Nonlinear Systems in Nanomechanics and Nanofluids: Analytical Methods and Applications; Copyright; Dedication ; Contents; Preface; Introduction; Audience; Acknowledgments; Chapter 1: Introduction to Nanotechnology, Nanomechanics, Micromechanics, and Nanofluid; 1.1. Nanotechnology; 1.1.1. Introduction to Nanotechnology; 1.1.2. Origins; 1.1.3. Fundamental Concepts; 1.1.4. Nanomaterials; 1.2. Nanomechanics; 1.3. Micromechanics; 1.4. Nanofluid; 1.4.1. Introduction; 1.4.2. Synthesis of Nanofluids; 1.4.3. Smart Cooling Nanofluids 327 $a1.4.4. Response Stimuli Nanofluids for Sensing Applications1.4.5. Applications; References; Chapter 2: Semi Nonlinear Analysis in Carbon Nanotube; 2.1. Introduction of Carbon Nanotube; 2.1.1. Single-Wall Nanotubes; 2.1.2. Multiwall Nanotubes; 2.1.3. Double-Wall Nanotubes; 2.2. Single SWCNT over a Bundle of Nanotube; 2.2.1. Introduction; 2.2.2. Formulations; 2.2.2.1. Schematic of problem; 2.2.2.2. Modeling the individual SWCNT as a beam; 2.2.2.3. Differential quadrature and solution procedure; 2.2.2.4. Finite element method; 2.2.3. Results; 2.2.3.1. Mesh point number effect 327 $a2.2.3.2. Length effect2.2.3.3. Validation of GDQ approach; 2.2.4. Conclusion; 2.3. Cantilevered SWCNT as a Nanomechanical Sensor; 2.3.1. Introduction; 2.3.2. Analysis of the Problem; 2.3.2.1. Basic bending vibration and resonant frequencies of SWCNT with attached mass; 2.3.2.2. Resonant frequency of cantilevered SWCNT where the mass is rigidly attached to the tip; 2.3.3. Numerical Results; 2.3.3.1. Vibration mode analysis; 2.3.4. Mass Sensor Mode Comparison; 2.3.5. Conclusion; 2.4. Nonlinear Vibration for Embedded CNT; 2.4.1. Introduction; 2.4.2. Basic Equations; 2.4.3. Solution Methodology 327 $a2.4.4. Numerical Results and Discussion2.4.5. Conclusion; 2.5. Curved SWCNT; 2.5.1. Introduction; 2.5.2. Vibrational Model; 2.5.3. Solution Methodology; 2.5.4. Numerical Results and Discussion; 2.5.5. Conclusion; 2.6. CNT with Rippling Deformations; 2.6.1. Introduction; 2.6.2. Vibration Model; 2.6.2.1. Boundary conditions; 2.6.2.2. Nonlinear vibration model; 2.6.2.3. Nonlinear analysis; 2.6.3. Results and Discussion; 2.6.4. Conclusion; References; Chapter 3: Physical Relationships between Nanoparticle and Nanofluid Flow; 3.1. Turbulent Natural Convection Using Cu/Water Nanofluid 327 $a3.1.1. Introduction3.1.2. Numerical Method; 3.1.2.1. Problem statement; 3.1.2.2. LBM; 3.1.2.3. LES method; 3.1.2.4. LBM based on LES model; 3.1.2.5. LBM for nanofluid; 3.1.2.6. Boundary conditions; 3.1.2.6.1. Flow; 3.1.2.6.2. Temperature; 3.1.3. Code Validation and Mesh Results; 3.1.4. Result and Discussion; 3.1.5. Conclusions; 3.2. Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates; 3.2.1. Introduction; 3.2.2. Governing Equations; 3.2.3. Analysis of the HPM; 3.2.4. Implementation of the Method; 3.2.5. Results and Discussion; 3.2.6. Conclusion 327 $a3.3. Slip Effects on Unsteady Stagnation Point Flow of a Nanofluid over a Stretching Sheet 330 $aWith Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas such as nanoelectronics and bionanotechnology, and the underlying framework can also be applied to other problems in various fields of engineering and applied sciences. 410 0$aMicro and Nano Technologies 606 $aNanofluids 606 $aNonlinear systems 615 0$aNanofluids. 615 0$aNonlinear systems. 676 $a515/.392 700 $aGanji$b Davood Domairry$0925557 702 $aKachapi$b Sayyid Habibollah Hashemi 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808589203321 996 $aApplication of nonlinear systems in nanomechanics and nanofluids$94063032 997 $aUNINA