LEADER 05826nam 22008293u 450 001 9910808585903321 005 20240313190132.0 010 $a3-527-67183-8 010 $a3-527-67181-1 010 $a1-299-44871-2 010 $a3-527-67184-6 035 $a(CKB)2550000001018621 035 $a(EBL)1161544 035 $a(OCoLC)841906605 035 $a(SSID)ssj0000904712 035 $a(PQKBManifestationID)11494224 035 $a(PQKBTitleCode)TC0000904712 035 $a(PQKBWorkID)10921470 035 $a(PQKB)11170756 035 $a(MiAaPQ)EBC1161544 035 $a(EXLCZ)992550000001018621 100 $a20131223d2013|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAtomistic Computer Simulations $eA Practical Guide 205 $a1st ed. 210 $aHoboken $cWiley$d2013 215 $a1 online resource (363 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41069-4 327 $aAtomistic Computer Simulations; Contents; Preface; References; Color Plates; Part One The World at the Atomic Scale; 1 Atoms, Molecules and Crystals; 1.1 Length- and Timescales; 1.2 Electrons in an Atom; 1.3 Local Environment of an Atom; 1.3.1 Electrons; 1.3.2 Local Arrangement of Atoms; 1.4 Most Favorable Arrangement of Atoms; 1.4.1 The Concept of Total Energy; 1.4.2 Beyond the Total Energy; 1.4.3 The Most Stable Configuration; References; 2 Bonding; 2.1 Electronic Ground State; 2.2 Types of Bonds; 2.2.1 Covalent Bonding; 2.2.2 Ionic Bonding; 2.2.3 Metallic Bonding; 2.2.4 Hydrogen Bonding 327 $a2.2.5 Dispersion Bonding2.3 Bond Breaking and Creation; 2.4 Distortion of Bonds; References; 3 Chemical Reactions; 3.1 Chemical Equations; 3.2 Reaction Mechanisms; 3.3 Energetics of Chemical Reactions; 3.4 Every (Valence) Electron Counts; 3.5 The Energy Zoo; References; 4 What Exactly is Calculated?; 4.1 What Can Be Calculated?; 4.2 What Actually Happens?; 4.3 Models and Simulation Cells; 4.4 Energies; 4.5 Terms; 4.6 Liquid Iron: An Example; References; Part Two Introducing Equations to Describe the System; 5 Total Energy Minimization; 5.1 The Essential Nature of Minimization 327 $a5.2 Minimization Algorithms5.2.1 Steepest Descents; 5.2.2 Conjugate Gradients; 5.2.3 Quasi-Newton Methods; 5.2.4 Alternatives; 5.2.5 Exploring Landscapes; 5.2.6 Scaling and Computational Cost; 5.3 Optimize with Success; 5.3.1 Initial Configuration; 5.3.2 Initial Forces, Choice of Algorithm and Parameters; 5.3.3 Fixing Atoms; 5.3.4 Scaling with System Size; 5.4 Transition States; 5.5 Pseudokeywords; References; 6 Molecular Dynamics and Monte Carlo; 6.1 Equations of Motion; 6.2 Time and Timescales; 6.3 System Preparation and Equilibration 327 $a6.4 Conserving Temperature, Pressure, Volume or Other Variables6.5 Free Energies; 6.6 Monte Carlo Approaches; 6.7 Pseudokeywords for an MD Simulation; References; Part Three Describing Interactions Between Atoms; 7 Calculating Energies and Forces; 7.1 Forcefields; 7.1.1 Reliability and Transferability; 7.2 Electrostatics; 7.3 Electronic and Atomic Motion; 7.3.1 The Born-Oppenheimer Approximation; 7.3.2 Approximating the Electronic Many-Body Problem; 7.4 Electronic Excitations; References; 8 Electronic Structure Methods; 8.1 Hartree-Fock; 8.2 Going Beyond Hartree-Fock 327 $a8.3 Density Functional Theory8.4 Beyond DFT; 8.5 Basis Sets; 8.6 Semiempirical Methods; 8.7 Comparing Methods; References; 9 Density Functional Theory in Detail; 9.1 Independent Electrons; 9.2 Exchange-Correlation Functionals; 9.3 Representing the Electrons: Basis Sets; 9.3.1 Plane Waves; 9.3.2 Atomic-Like Orbitals; 9.4 Electron-Nuclear Interaction; 9.4.1 Pseudopotentials; 9.4.2 PAW; 9.4.3 Using All Electrons; 9.5 Solving the Electronic Ground State; 9.5.1 Charge Mixing and Electrostatics; 9.5.2 Metals and Occupancy; 9.6 Boundary Conditions and Reciprocal Space; 9.7 Difficult Problems 327 $a9.8 Pseudokeywords 330 $aMany books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o 606 $aAtoms 606 $aMolecular dynamics -- Computer simulation 606 $aMolecules 606 $aAtoms$xComputer simulation 606 $aMolecular dynamics$xComputer simulation 606 $aPhysics$2HILCC 606 $aHuman Anatomy & Physiology$2HILCC 606 $aHealth & Biological Sciences$2HILCC 606 $aPhysical Sciences & Mathematics$2HILCC 606 $aAtomic Physics$2HILCC 606 $aAnimal Biochemistry$2HILCC 615 4$aAtoms. 615 4$aMolecular dynamics -- Computer simulation. 615 4$aMolecules. 615 0$aAtoms$xComputer simulation. 615 0$aMolecular dynamics$xComputer simulation. 615 7$aPhysics 615 7$aHuman Anatomy & Physiology 615 7$aHealth & Biological Sciences 615 7$aPhysical Sciences & Mathematics 615 7$aAtomic Physics 615 7$aAnimal Biochemistry 676 $a539.70113 700 $aBrazdova$b Veronika$01718798 701 $aBowler$b David R$01718799 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910808585903321 996 $aAtomistic Computer Simulations$94116051 997 $aUNINA