LEADER 03518nam 2200697 a 450 001 9910808491103321 005 20200520144314.0 010 $a1-107-11278-8 010 $a0-511-15473-9 010 $a0-511-05325-8 010 $a0-511-55571-7 010 $a0-511-75405-1 010 $a0-511-11628-4 010 $a1-280-15193-5 010 $a9786610151936 010 $a0-521-55874-3 035 $a(CKB)111056485621446 035 $a(EBL)147296 035 $a(OCoLC)475871334 035 $a(SSID)ssj0000211888 035 $a(PQKBManifestationID)11181456 035 $a(PQKBTitleCode)TC0000211888 035 $a(PQKBWorkID)10135599 035 $a(PQKB)11603652 035 $a(UkCbUP)CR9780511754050 035 $a(Au-PeEL)EBL147296 035 $a(CaPaEBR)ebr10001917 035 $a(CaONFJC)MIL15193 035 $a(PPN)261362097 035 $a(MiAaPQ)EBC147296 035 $a(EXLCZ)99111056485621446 100 $a20011228d2001 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNonlinear dynamics $ea primer /$fAlfredo Medio, Marji Lines 205 $a1st ed. 210 $aCambridge ;$aNew York $cCambridge University Press$d2001 215 $a1 online resource (xiii, 300 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-55186-2 311 $a0-511-01604-2 320 $aIncludes bibliographical references (p. 287-293) and index. 327 $aStatics and dynamics : some elementary concepts -- Review of linear systems -- Stability of fixed points -- Invariant and attracting sets, periodic and quasiperiodic orbits -- Local bifurcations -- Chaotic sets and chaotic attractors -- Characteristic exponents, fractals, homoclinic orbits -- Transition to chaos -- The ergodic approach -- Deterministic systems and stochastic processes. 330 $aA systematic and comprehensive introduction to the study of nonlinear dynamical systems, in both discrete and continuous time, for nonmathematical students and researchers working in applied fields. An understanding of linear systems and the classical theory of stability are essential although basic reviews of the relevant material are provided. Further chapters are devoted to the stability of invariant sets, bifurcation theory, chaotic dynamics and the transition to chaos. In the final two chapters the authors approach the subject from a measure-theoretical point of view and compare results to those given for the geometrical or topological approach of the first eight chapters. Includes about one hundred exercises. A Windows-compatible software programme called DMC, provided free of charge through a website dedicated to the book, allows readers to perform numerical and graphical analysis of dynamical systems. Also available on the website are computer exercises and solutions to selected book exercises. See www.cambridge.org/economics/resources 606 $aDifferentiable dynamical systems 606 $aNonlinear theories 615 0$aDifferentiable dynamical systems. 615 0$aNonlinear theories. 676 $a515/.352 700 $aMedio$b Alfredo$f1938-$077815 701 $aLines$b M$g(Marji),$f1951-$0118964 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808491103321 996 $aNonlinear dynamics$937892 997 $aUNINA