LEADER 09223nam 2200721 a 450 001 9910808406303321 005 20200520144314.0 010 $a9781118540398 010 $a1118540395 010 $a9781299242159 010 $a1299242154 010 $a9781118540404 010 $a1118540409 010 $a9781118540282 010 $a111854028X 035 $a(CKB)2670000000336620 035 $a(EBL)1120975 035 $a(OCoLC)818327396 035 $a(SSID)ssj0000831908 035 $a(PQKBManifestationID)11421092 035 $a(PQKBTitleCode)TC0000831908 035 $a(PQKBWorkID)10881309 035 $a(PQKB)10486969 035 $a(MiAaPQ)EBC1120975 035 $a(Au-PeEL)EBL1120975 035 $a(CaPaEBR)ebr10662577 035 $a(CaONFJC)MIL455465 035 $a(PPN)182403246 035 $a(OCoLC)818316875 035 $a(FINmELB)ELB178491 035 $a(Perlego)1001727 035 $a(EXLCZ)992670000000336620 100 $a20121114d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEvaluation of enzyme inhibitors in drug discovery $ea guide for medicinal chemists and pharmacologists /$fby Robert A. Copeland 205 $a2nd ed. 210 $aHoboken, N.J. $cWiley$dc2013 215 $a1 online resource (572 p.) 300 $aDescription based upon print version of record. 311 08$a9781118488133 311 08$a111848813X 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: Foreword.Preface.Acknowledgments.1. Why Enzymes as Drug Targets?1.1 Enzymes Are Essentials for Life.1.2 Enzyme Structure and Catalysis.1.3 Permutations of Enzyme Structure During Catalysis.1.4 Other Reasons for Studying Enzymes.1.5 Summary.References.2. Enzyme Reaction Mechanisms.2.1 Initial Binding of Substrate.2.2 Noncovalent Forces in Reversible Ligand Binding to Enzymes.2.2.1 Electrostatic Forces.2.2.2 Hydrogen Bonds.2.2.3 Hydrophobic Forces.2.2.4 van der Waals Forces.2.3 Transformations of the Bond Substrate.2.3.1 Strategies for Transition State Stabilization.2.3.2 Enzyme Active Sites Are Most Complementary to the Transition State Structure.2.4 Steady State Analysis of Enzyme Kinetics.2.4.1 Factors Affecting the Steady State Kinetic Constants.2.5 Graphical Determination of kcat and KM2.6 Reactions Involving Multiple Substates.2.6.1 Bisubstrate Reaction Mechanisms.2.7 Summary.References.3. Reversible Modes of Inhibitor Interactions with Enzymes.3.1 Enzyme-Inhibitor Binding Equilibria.3.2 Competitive Inhibition.3.3 Noncompetitive Inhibition.3.3.1 Mutual Exclusively Studies.3.4 Uncompetitive Inhibition.3.5 Inhibition Modality in Bisubstrate Reactions.3.6 Value of Knowing Inhibitor Modality.3.6.1 Quantitative Comparisons of Inhibitor Affinity.3.6.2 Relating Ki to Binding Energy.3.6.3 Defining Target Selectivity by Ki Values.3.6.4 Potential Advantages and Disadvantages of Different Inhibition Modalities In Vivo.3.6.5 Knowing Inhibition Modality Is Important for Structure-Based Lead Organization.3.7 Summary.References.4. Assay Considerations for Compound Library Screening.4.1 Defining Inhibition Signal Robustness, and Hit Criteria.4.2 Measuring Initial Velocity.4.2.1 End-Point and Kinetic Readouts.4.2.2 Effects of Enzyme Concentration.4.3 Balanced Assay Conditions.4.3.1 Balancing Conditions for Multisubstrate Reactions.4.4 Order of Reagent Addition.4.5 Use of Natural Substrates and Enzymes.4.6 Coupled Enzyme Assays.4.7 Hit Validation and Progression.4.8 Summary.References.5. Lead Optimization and Structure-Activity Relationships for Reversible Inhibitors.5.1 Concentration-Response Plots and IC50 Determination.5.1.1 The Hill Coefficient.5.1.2 Graphing and Reporting Concentration-Response Data.5.2 Testing for Reversibility.5.3 Determining Reversible Inhibition Modality and Dissociation Constant.5.4 Comparing Relative Affinity.5.4.1 Compound Selectivity.5.5 Associating Cellular Effects with Target Enzyme Inhibition.5.5.1 Cellular Phenotype Should Be Consistent with Genetic Knockout or Knockdown of the Target Enzyme.5.5.2 Cellular Activity Should Require a Certain Affinity for the target Enzyme.5.5.3 Buildup of Substrate and/or Diminution of Product for the Target Enzyme Should Be Observed in Cells.5.5.4 Cellular Phenotype Should Be Reversed by Cell-Permeable Product or Downstream Metabolites of the Target Enzyme Activity.5.5.5 Mutation of the Target Enzyme Should Lead to Resistance or Hypersensitivity to Inhibitors.5.6 Summary.References.6. Slow Binding Inhibitors.6.1 Determining kobs: The Rate Constant for Onset of Inhibition.6.2 Mechanisms of Slow Binding Inhibition.6.3 Determination of Mechanism and Assessment of True Affinity.6.3.1 Potential Clinical Advantages of Slow Off-rate Inhibitors.6.4 Determining Inhibition Modality for Slow Binding Inhibitors.6.5 SAR for Slow Binding Inhibitors.6.6 Some Examples of Pharmacologically Interesting Slow Binding Inhibitors.6.6.1 Examples of Scheme B: Inhibitors of Zinc Peptidases and Proteases.6.6.2 Example of Scheme C: Inhibition of Dihydrofolate Reductase by Methotresate.6.6.3 Example of Scheme C: Inhibition of Calcineurin by FKBP-Inhibitor Complexes.6.6.4 Example of Scheme C When Ki* << Ki: Aspartyl Protease Inhibitors.6.6.5 Example of Scheme C When k6 Is Very Small: Selective COX2 Inhibitors.6.7 Summary.References.7. Tight Binding Inhibitors.7.1 Effects of Tight Binding Inhibition Concentration-Response Data.7.2 The IC50 Value Depends on Kiapp and [E]T.7.3 Morrison's Quadratic Equation for Fiting Concentration-Response Data for Tight Binding Inhibitors.7.3.1 Optimizing Conditions for Kiapp Determination Using Morrison's Equation.7.3.2 Limits on Kiapp Determinations.7.3.3 Use of a Cubic Equation When Both Substrate and Inhibitor Are Tight Binding.7.4 Determining Modality for Tight Binding Enzyme Inhibitors.7.5 Tight Binding Inhibitors Often Display Slow Binding Behavior.7.6 Practical Approaches to Overcoming the Tight Binding Limit in Determine Ki.7.7 Enzyme-Reaction Intermediate Analogues as Example of Tight Binding Inhibitors.7.7.1 Bisubstrate Analogues.7.7.2 Testing for Transition State Mimicry.7.8 Potential Clinical Advantages of Tight Binding Inhibitors.7.9 Determination of [E]T Using Tight Binding Inhibitors.7.10 Summary.References.8. Irreversible Enzyme Inactivators.8.1 Kinetic Evaluation of Irreversible Enzyme Inactivators.8.2 Affinity Labels.8.2.1 Quiescent Affinity Labels.8.2.2 Potential Liabilities of Affinity Labels as Drugs.8.3 Mechanism-Based Inactivators.8.3.1 Distinguishing Features of Mechanism-Based Inactivation.8.3.2 Determination of the Partition Ratio.8.3.3 Potential Clinical Advantages of Mechanism-Based Inactivators.8.3.4 Examples of Mechanism-Based Inactivators as Drugs.8.4 Use of Affinity Labels as Mechanistic Tools.8.5 Summary.References.Appendix 1. Kinetic of Biochemical Reactions.A1.1 The Law of Mass Action and Reaction Order.A1.2 First-Order Reaction Kinetics.A1.3 Second-Order Reaction Kinetics.A1.4 Pseudo-First-Order Reaction Conditions.A1.5 Approach to Equilibrium: An Example of the Kinetics of Reversible Reactions.References.Appendix 2. Derivation of the Enzyme-Ligand Binding Isotherm Equation.References.Appendix 3. Serial Dilution Schemes.Index. 330 $a"There has been explosive growth in the hunt for new pharmaceutically agents globally. Traditionally, this has been the purview of the pharmaceutical industry, but today, this effort crosses academic, government, and industry laboratories across the world. Enzymes remain the most valued and common of drug targets; hence, a detailed understanding of their interactions with inhibitors is critical to successful drug discovery. This book provides a practical, readable, and comprehensive treatment of these topics that allows scientists to master the art of applied enzymology for drug discovery. The book addresses the opportunities for inhibitor interactions with enzyme targets arising from consideration of the catalytic reaction mechanism; discusses how inhibitors are properly evaluated for potency, selectivity, and mode of action, covers the potential advantages and liabilities of specific inhibition modalities with respect to efficacy in vivo, and provides valuable biochemical insights to help medicinal chemists and pharmacologists most effectively pursue lead optimization. It includes two new chapters, one on the pioneering idea of drug-target residence time fostered by Dr. Copeland, and the second on quantitative biochemistry. Five new appendices are added"--Provided by publisher. 606 $aEnzyme inhibitors$xTherapeutic use$xTesting 606 $aDrugs$xDesign 606 $aEnzyme inhibitors$xStructure-activity relationships 615 0$aEnzyme inhibitors$xTherapeutic use$xTesting. 615 0$aDrugs$xDesign. 615 0$aEnzyme inhibitors$xStructure-activity relationships. 676 $a615/.19 700 $aCopeland$b Robert Allen$0478630 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808406303321 996 $aEvaluation of enzyme inhibitors in drug discovery$91489960 997 $aUNINA