LEADER 05745nam 2200781Ia 450 001 9910808340503321 005 20240516163101.0 010 $a3-527-65452-6 010 $a1-280-66354-5 010 $a9786613640475 010 $a3-527-65450-X 010 $a3-527-65453-4 035 $a(CKB)2550000000099720 035 $a(EBL)915633 035 $a(OCoLC)793996624 035 $a(SSID)ssj0000661413 035 $a(PQKBManifestationID)11470066 035 $a(PQKBTitleCode)TC0000661413 035 $a(PQKBWorkID)10713339 035 $a(PQKB)10107276 035 $a(MiAaPQ)EBC915633 035 $a(Au-PeEL)EBL915633 035 $a(CaPaEBR)ebr10560542 035 $a(CaONFJC)MIL364047 035 $a(EXLCZ)992550000000099720 100 $a20120528d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCharacterization techniques for polymer nanocomposites /$fedited by Vikas Mittal 205 $a1st ed. 210 $aWeinheim $cWiley-VCH$dc2012 215 $a1 online resource (380 p.) 225 1 $aPolymer nano-, micro- & macrocomposites 300 $aDescription based upon print version of record. 311 $a3-527-33148-4 320 $aIncludes bibliographical references and index. 327 $aCharacterization Techniques for Polymer Nanocomposites; Contents; Preface; List of Contributors; 1: Characterization of Nanocomposite Materials: An Overview; 1.1 Introduction; 1.2 Characterization of Morphology and Properties; 1.3 Examples of Characterization Techniques; References; 2: Thermal Characterization of Fillers and Polymer Nanocomposites; 2.1 Introduction; 2.2 TGA of Fillers; 2.2.1 Quantification of the Extent of Surface Modification; 2.2.2 Cleanliness of the Filler Surface; 2.2.3 Comparing the Stability of Different Fillers; 2.2.4 Dynamic TGA Analysis of the Fillers 327 $a2.2.5 Characterization of the Surface Reactions2.2.6 Different Measurement Environments; 2.2.7 Correlation of Organic Matter with Basal Spacing; 2.3 TGA of Polymer Nanocomposites; 2.3.1 Effect of Filler Concentration; 2.3.2 Effect of Compatibilizer; 2.4 DSC of Fillers; 2.4.1 Thermal Transitions in the Modified Fillers; 2.5 DSC of Composites; 2.5.1 Transitions in Composites; 2.5.2 Optimization of Curing Conditions; References; 3: Flame-Retardancy Characterization of Polymer Nanocomposites; 3.1 Introduction; 3.2 Types of Flame-Retardant Nanoadditives; 3.2.1 One-Dimensional Nanomaterials 327 $a3.2.1.1 Montmorillonite Clay3.2.1.2 Nanographene Platelets; 3.2.2 Two-Dimensional Nanomaterials; 3.2.2.1 Carbon Nanofibers; 3.2.2.2 Carbon Nanotubes; 3.2.2.3 Halloysite Nanotubes; 3.2.3 Three-Dimensional Nanomaterials; 3.2.3.1 Nanosilica; 3.2.3.2 Nanoalumina; 3.2.3.3 Nanomagnesium Hydroxide; 3.2.3.4 Polyhedral Oligomeric Silsequioxanes; 3.3 Thermal, Flammability, and Smoke Characterization Techniques; 3.3.1 Introduction to Test Methods; 3.3.2 Thermogravimetric Analysis (TGA); 3.3.3 The UL 94 Vertical Flame Test; 3.3.4 Oxygen Index (Limiting Oxygen Index) (ASTM D2863-97) 327 $a3.3.5 Cone Calorimeter (ASTM E 1354)3.3.6 Microscale Combustion Calorimeter (ASTM D 7309); 3.3.7 Steiner Tunnel Test (ASTM E 84); 3.4 Thermal and Flame Retardancy of Polymer Nanocomposites; 3.4.1 One-Dimensional Nanomaterial-Based Nanocomposites; 3.4.1.1 Polymer-Clay Nanocomposites; 3.4.1.2 Polymer-Graphene Nanocomposites; 3.4.2 Two-Dimensional Nanomaterial-Based Nanocomposites; 3.4.2.1 Polymer Carbon Nanofiber Nanocomposites; 3.4.2.2 Polymer Carbon Nanotube Nanocomposites; 3.4.2.3 Polymer Halloysite Nanotube Nanocomposites; 3.4.3 Three-Dimensional Nanomaterial-Based Nanocomposites 327 $a3.4.3.1 Polymer Nanosilica Nanocomposites3.4.3.2 Polymer Nanoalumina Nanocomposites; 3.4.3.3 Polymer Nanomagnesium Hydroxide Nanocomposites; 3.4.3.4 Polymer POSS Nanocomposites; 3.4.4 Multicomponent FR Systems: Polymer Nanocomposites Combined with Additional Materials; 3.4.4.1 Polymer-Clay with Conventional FR Additive Nanocomposites; 3.4.4.2 Polymer-Carbon Nanotubes with Conventional FR Additive Nanocomposites; 3.4.4.3 Polymer-Clay and -Carbon Nanotubes with Conventional FR Additive Nanocomposites; 3.5 Flame Retardant Mechanisms of Polymer Nanocomposites 327 $a3.6 Concluding Remarks and Trends of Polymer Nanocomposites 330 $aWith its focus on the characterization of nanocomposites using such techniques as x-ray diffraction and spectrometry, light and electron microscopy, thermogravimetric analysis, as well as nuclear magnetic resonance and mass spectroscopy, this book helps to correctly interpret the recorded data. Each chapter introduces a particular characterization method, along with its foundations, and makes the user aware of its benefits, but also of its drawbacks.As a result, the reader will be able to reliably predict the microstructure of the synthesized polymer nanocomposite and its thermal and mecha 410 0$aPolymer nano-, micro- & macrocomposite series. 606 $aPolymer composites 606 $aNanostructured materials 606 $aFillers (Materials)$xSurfaces 606 $aNanotechnology 606 $aComposite materials 606 $aSurfaces 615 0$aPolymer composites. 615 0$aNanostructured materials. 615 0$aFillers (Materials)$xSurfaces. 615 0$aNanotechnology. 615 0$aComposite materials. 615 0$aSurfaces. 676 $a620.192 701 $aMittal$b Vikas$0859118 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808340503321 996 $aCharacterization techniques for polymer nanocomposites$94028521 997 $aUNINA