LEADER 05410nam 2200697 a 450 001 9910808240103321 005 20240313173530.0 010 $a1-118-56200-3 010 $a1-299-31587-9 010 $a1-118-56330-1 035 $a(CKB)2560000000100665 035 $a(EBL)1143591 035 $a(OCoLC)830161740 035 $a(SSID)ssj0000832832 035 $a(PQKBManifestationID)11501384 035 $a(PQKBTitleCode)TC0000832832 035 $a(PQKBWorkID)10899625 035 $a(PQKB)10589085 035 $a(OCoLC)830512388 035 $a(MiAaPQ)EBC1143591 035 $a(Au-PeEL)EBL1143591 035 $a(CaPaEBR)ebr10671514 035 $a(CaONFJC)MIL462837 035 $a(EXLCZ)992560000000100665 100 $a20111117d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCarbon nanotubes and nanosensors $evibration, buckling and ballistic impact /$fIsaac Elishakoff ... [et al.] 205 $a1st ed. 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2012 215 $a1 online resource (437 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-345-X 320 $aIncludes bibliographical references and indexes. 327 $aCover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1. The need of determining the natural frequencies and buckling loads of CNTs; 1.2. Determination of natural frequencies of SWCNT as a uniform beam model and MWCNT during coaxial deflection; 1.3. Beam model of MWCNT; 1.4. CNTs embedded in an elastic medium; Chapter 2. Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes; 2.1. Background; 2.2. Analysis; 2.3. Simply supported DWCNT: exact solution; 2.4. Simply supported DWCNT: Bubnov-Galerkin method 327 $a2.5. Simply supported DWCNT: Petrov-Galerkin method2.6. Clamped-clamped DWCNT: Bubnov-Galerkin method; 2.7. Clamped-clamped DWCNT: Petrov-Galerkin method; 2.8. Simply supported-clamped DWCNT; 2.9. Clamped-free DWCNT; 2.10. Comparison with results of Natsuki et al. [NAT 08a]; 2.11. On closing the gap on carbon nanotubes; 2.11.1. Linear analysis; 2.11.2. Nonlinear analysis; 2.12. Discussion; Chapter 3. Free Vibrations of the Triple-Walled Carbon Nanotubes; 3.1. Background; 3.2. Analysis; 3.3. Simply supported TWCNT: exact solution; 3.4. Simply supported TWCNT: approximate solutions 327 $a3.5. Clamped-clamped TWCNT: approximate solutions3.6. Simply supported-clamped TWCNT: approximate solutions; 3.7. Clamped-free TWCNT: approximate solutions; 3.8. Summary; Chapter 4. Exact Solution for Natural Frequencies of Clamped-Clamped Double-Walled Carbon Nanotubes; 4.1. Background; 4.2. Analysis; 4.3. Analytical exact solution; 4.4. Numerical results and discussion; 4.4.1. Bubnov-Galerkin method; 4.5. Discussion; 4.6. Summary; Chapter 5. Natural Frequencies of Carbon Nanotubes Based on a Consistent Version of Bresse-Timoshenko Theory; 5.1. Background 327 $a5.2. Bresse-Timoshenko equations for homogeneous beams5.3. DWCNT modeled on the basis of consistent Bresse-Timoshenko equations; 5.4. Numerical results and discussion; Chapter 6. Natural Frequencies of Double-Walled Carbon Nanotubes Based on Donnell Shell Theory; 6.1. Background; 6.2. Donnell shell theory for the vibration of MWCNTs; 6.3. Donnell shell theory for the vibration of a simply supported DWCNT; 6.4. DWCNT modeled on the basis of simplified Donnell shell theory; 6.5. Further simplifications of the Donnell shell theory; 6.6. Summary 327 $aChapter 7. Buckling of a Double-Walled Carbon Nanotube7.1. Background; 7.2. Analysis; 7.3. Simply supported DWCNT: exact solution; 7.4. Simply supported DWCNT: Bubnov-Galerkin method; 7.5. Simply supported DWCNTs: Petrov-Galerkin method; 7.6. Clamped-clamped DWCNT; 7.7. Simply supported-clamped DWCNT; 7.8. Buckling of a clamped-free DWCNT by finite difference method; 7.9. Buckling of a clamped-free DWCNT by Bubnov-Galerkin method; 7.9.1. Analysis; 7.9.2. Results; 7.9.3. Conclusion; 7.10. Summary; Chapter 8. Ballistic Impact on a Single-Walled Carbon Nanotube; 8.1. Background; 8.2. Analysis 327 $a8.3. Numerical results and discussion 330 $aThe main properties that make carbon nanotubes (CNTs) a promising technology for many future applications are: extremely high strength, low mass density, linear elastic behavior, almost perfect geometrical structure, and nanometer scale structure. Also, CNTs can conduct electricity better than copper and transmit heat better than diamonds. Therefore, they are bound to find a wide, and possibly revolutionary use in all fields of engineering.The interest in CNTs and their potential use in a wide range of commercial applications; such as nanoelectronics, quantum wire interconnects, field em 410 0$aISTE 606 $aNanotubes$xImpact testing 606 $aNanotubes$xElastic properties 606 $aDetectors$xTesting 615 0$aNanotubes$xImpact testing. 615 0$aNanotubes$xElastic properties. 615 0$aDetectors$xTesting. 676 $a620.1/15 701 $aElishakoff$b Isaac$031244 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808240103321 996 $aCarbon nanotubes and nanosensors$94074285 997 $aUNINA