LEADER 02824nam 2200553 450 001 9910808074303321 005 20170822144511.0 010 $a1-4704-0394-3 035 $a(CKB)3360000000464980 035 $a(EBL)3114570 035 $a(SSID)ssj0000973621 035 $a(PQKBManifestationID)11514626 035 $a(PQKBTitleCode)TC0000973621 035 $a(PQKBWorkID)10960480 035 $a(PQKB)10310465 035 $a(MiAaPQ)EBC3114570 035 $a(RPAM)13415935 035 $a(PPN)19541683X 035 $a(EXLCZ)993360000000464980 100 $a20150416h20042004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGromov-Hausdorff distance for quantum metric spaces $ematrix algebras converge to the sphere for quantum Gromov-Hausdorff distance /$fMarc A. Rieffel 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2004. 210 4$dİ2004 215 $a1 online resource (106 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 168, Number 796 300 $a"March 2004, Volume 168, Number 796 (first of 4 numbers)." 311 $a0-8218-3518-1 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Preface""; ""Gromov-Hausdorff Distance for Quantum Metric Spaces""; ""1. Introduction""; ""2. Compact Quantum Metric Spaces""; ""3. Quotients (= ""subsets"")""; ""4. Quantum Gromov-Hausdorff Distance""; ""5. Bridges""; ""6. Isometries""; ""7. Distance Zero""; ""8. Actions of Compact Groups""; ""9. Quantum Tori""; ""10. Continuous Fields of Order-unit Spaces""; ""11. Continuous Fields of Lip-norms""; ""12. Completeness""; ""13. Finite Approximation and Compactness""; ""Appendix 1. An Example where dist[sub(GH)] > dist[sub(q)]""; ""Appendix 2. Dirac Operators are Universal"" 327 $a""Bibliography""""Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance""; ""0. Introduction""; ""1. The Quantum Metric Spaces""; ""2. Choosing the Bridge Constant I?³""; ""3. Compact Semisimple Lie Groups""; ""4. Covariant Symbols""; ""5. Contravariant Symbols""; ""6. Conclusion of the Proof of Theorem 3.2""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 168, Number 796. 606 $aNoncommutative differential geometry 606 $aGlobal differential geometry 615 0$aNoncommutative differential geometry. 615 0$aGlobal differential geometry. 676 $a516.3/6 700 $aRieffel$b Marc A$g(Marc Aristide),$f1937-$061830 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808074303321 996 $aGromov-Hausdorff distance for quantum metric spaces$91427336 997 $aUNINA