LEADER 02778nam 2200589 450 001 9910808072203321 005 20231211230453.0 010 $a1-4704-0333-1 035 $a(CKB)3360000000464924 035 $a(EBL)3114358 035 $a(SSID)ssj0000973372 035 $a(PQKBManifestationID)11630556 035 $a(PQKBTitleCode)TC0000973372 035 $a(PQKBWorkID)10959898 035 $a(PQKB)10687758 035 $a(MiAaPQ)EBC3114358 035 $a(RPAM)12585688 035 $a(PPN)195416260 035 $a(EXLCZ)993360000000464924 100 $a20011109h20022002 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMutual invadability implies coexistence in spatial models /$fRick Durrett 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2002] 210 4$dİ2002 215 $a1 online resource (133 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 740 300 $a"March 2002, volume 156, number 740 (first of 5 numbers)." 311 $a0-8218-2768-5 320 $aIncludes bibliographical references (pages 110-118). 327 $a""Contents""; ""Introduction""; ""Example 1. Predator-prey models""; ""Example 2. Epidemic models""; ""1. Perturbation of one-dimensional systems""; ""2. Two-species Examples""; ""Example 2.1. Linear competition with exclusion""; ""Example 2.2. Two-stage contact process""; ""Example 2.3. Diploid genetics""; ""Example 2.4. One-dimensional systems""; ""Example 2.5. Linear competition without exclusion""; ""3. Lower bounding lemmas for PDE""; ""4. Perturbation of higher-dimensional systems""; ""5. Lyapunov functions for Lotka Volterra systems""; ""6. Three species linear completion models"" 327 $a""7. Three species predator-prey systems""""Example 7.1. Two-prey, one-predator model""; ""Example 7.2. Three species food chain""; ""Example 7.3. Two-predator, one-prey model""; ""Example 7.4. Two infection model""; ""8. Some asymptotic results for our ODE and PDE""; ""A List of the Invadability Conditions""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 740. 606 $aStochastic processes 606 $aReaction-diffusion equations 606 $aBiology$xMathematical models 615 0$aStochastic processes. 615 0$aReaction-diffusion equations. 615 0$aBiology$xMathematical models. 676 $a510 s 676 $a519.2 700 $aDurrett$b Richard$f1951-$055577 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808072203321 996 $aMutual invadability implies coexistence in spatial models$94003890 997 $aUNINA