LEADER 02796nam 2200553 450 001 9910808071903321 005 20180731044357.0 010 $a1-4704-0332-3 035 $a(CKB)3360000000464923 035 $a(EBL)3114575 035 $a(SSID)ssj0000976572 035 $a(PQKBManifestationID)11948431 035 $a(PQKBTitleCode)TC0000976572 035 $a(PQKBWorkID)11020688 035 $a(PQKB)10105570 035 $a(MiAaPQ)EBC3114575 035 $a(RPAM)12504525 035 $a(PPN)195416252 035 $a(EXLCZ)993360000000464923 100 $a20010816d2002 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSub-Laplacians with drift on Lie groups of polynomial volume growth /$fGeorgios K. Alexopoulos 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2002. 215 $a1 online resource (119 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 739 300 $a"Volume 155, number 739 (end of volume)." 311 $a0-8218-2764-2 320 $aIncludes bibliographical references. 327 $a""11. A Taylor formula for the heat functions on nilpotent Lie groups""""12. Harnack inequalities for the derivatives of the heat functions on nilpotent Lie groups""; ""13. Harmonic functions of polynomial growth on nilpotent Lie groups""; ""14. Proof of the Berry-Esseen estimate in the case of nilpotent Lie groups""; ""15. The nil-shadow of a simply connected solvable Lie group""; ""16. Connected Lie groups of polynomial volume growth""; ""17. Proof of propositions 1.6.3 and 1.6.4 in the general case""; ""18. Proof of the Gaussian estimate in the general case"" 327 $a""19. A Berry-Esseen estimate for the heat kernels on connected Lie groups of polynomial volume growth""""20. Polynomials on connected Lie groups of polynomial growth""; ""21. A Taylor formula for the heat functions on connected Lie groups of polynomial volume growth""; ""22. Harnack inequalities for the derivatives of the heat functions""; ""23. Harmonic functions of polynomial growth""; ""24. Berry-Esseen type of estimates for the derivatives of the heat kernel""; ""25. Riesz transforms""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 739. 606 $aLie groups 606 $aFunctional analysis 615 0$aLie groups. 615 0$aFunctional analysis. 676 $a510 s 676 $a512/.55 700 $aAlexopoulos$b Georgios K.$f1962-$01652931 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910808071903321 996 $aSub-Laplacians with drift on Lie groups of polynomial volume growth$94003887 997 $aUNINA