LEADER 06787nam 22009853u 450 001 9910807997103321 005 20240514045929.0 010 $a1-283-23957-4 010 $a9786613239570 010 $a0-470-97826-0 010 $a0-470-97825-2 035 $a(CKB)3460000000003466 035 $a(EBL)792786 035 $a(OCoLC)760886983 035 $a(SSID)ssj0000482442 035 $a(PQKBManifestationID)12168085 035 $a(PQKBTitleCode)TC0000482442 035 $a(PQKBWorkID)10525723 035 $a(PQKB)11310068 035 $a(MiAaPQ)EBC792786 035 $a(EXLCZ)993460000000003466 100 $a20130418d2011|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aVisualization of Fields and Applications in Engineering$b[electronic resource] 205 $a1st ed. 210 $aChicester $cWiley$d2011 215 $a1 online resource (384 p.) 300 $aDescription based upon print version of record. 311 $a0-470-97397-8 327 $aVisualization of Fields and Applications in Engineering; Contents; Preface; 1 Introduction; 1.1 A General View; 1.2 Historical Development and Progress in Visual Science; 1.3 Scientific Visualization Philosophy, Techniques and Challenges; 2 Field Descriptions and Kinematics; 2.1 Lagrangian/Eulerian Description and Transformation; 2.2 Curvilinear Coordinates; 2.2.1 Polar Coordinate; 2.2.2 Streamline (Flux Line) Coordinates; 2.2.3 Potential-Stream Function Coordinates; 2.3 Field Kinematics and Visual Attributes; 2.3.1 Field Line Trajectory; 2.3.2 Field Line Integral Curves 327 $a2.3.3 Field Lines, Material Lines and Path Lines2.3.4 Streamlines (Flux Lines); 3 Field Model, Representation and Visualization; 3.1 Field Models and Concepts; 3.2 Scalar Fields and Representation; 3.3 Vector Fields and Representation; 3.4 Vector Icons and Classifications; 3.4.1 Classification Based on Domain Configurations; 3.4.2 Classification Based on Information Levels; 3.4.3 Classification Based on Topological Skeleton; 3.5 Scalar Potential; 3.6 Vector Potential; 3.7 Vector Field Specification; 3.7.1 Helmholtz's Theorem; 3.8 Tensor Contraction and Transport Process Visualization 327 $a3.8.1 Mechanical Energy Function and Heatfunction3.8.2 Strain Energy Trajectory and Strain Function; 3.9 Multiple Fields; 4 Complex Analysis and Complex Potentials; 4.1 Complex Variables/Functions and Applications; 4.2 Complex Analysis and Cauchy-Riemann Equation; 4.3 Differentiation of Complex Function; 4.4 Integration of Complex Functions; 4.5 Visualization of Complex Potentials; 4.5.1 Trajectory Method; 4.5.2 Method of Curvilinear Squares; 4.5.3 Transfer Characteristics and Field Property Evaluation; 4.6 Example 4.1a Visualization of Heat and Fluid Transport in a Corner 327 $a5 Field Mapping and Applications 5.1 Introduction; 5.2 Mapping of Euclidean Geometry; 5.2.1 Congruent Mapping; 5.2.2 Similitude Mapping; 5.2.3 Affine Mapping; 5.3 Inversion Mapping; 5.3.1 Circle Inversion; 5.4 Mapping with Complex Functions; 5.5 Conformal Mapping and Applications; 5.6 Hodograph Method and Mapping; 5.6.1 Conjugate Hodograph; 5.6.2 Hodograph; 5.7 Hodograph Representations and Applications; 5.7.1 Straight Boundaries; 5.7.2 Free Surface; 5.7.3 Special Field Patterns; 5.7.4 Projectile Trajectory in Constant Force Fields; 5.7.5 Motion Trajectory in Central Force Fields 327 $a5.7.6 Trajectory of Charged Particles in Uniform Magnetic Fields5.8 Example 4.1b Mapping of Field Patterns and Image Warping; 6 Tensor Representation, Contraction and Visualization; 6.1 Introduction; 6.2 Development of Tensor Visualization Techniques; 6.2.1 Mohr's Circle; 6.2.2 Tensor Field Line Trajectories (Lines of Principal Stress); 6.2.3 Isochromatics; 6.2.4 Isoclines; 6.2.5 Stress Trajectories; 6.2.6 Slip Lines; 6.2.7 Isopachs; 6.3 Tensor Description and Representation; 6.3.1 Tensor Icons and Classification; 6.4 Tensor Decomposition and Tensor Rank Reduction 327 $a6.4.1 Strain Tensor and Stress Tensor 330 $aDriven by advances in computer technology, engineering analysis has developed rapidly and extensively in recent times; Visualization of Fields and Applications in Engineering presents the basic techniques for tensor field visualization and mapping of engineering data. Focusing on the fundamental aspects of post processing databases and applications outputs, the author explores existing theories and their integration in tensor field visualization and analysis. The subject covers fundamental theories through to integrated, multi-disciplinary technologies with practical applications in eng 606 $aElectromagnetic fields - Mathematical models 606 $aElectromagnetic fields -- Mathematical models 606 $aEngineering mathematics 606 $aEngineering mathematics 606 $aFluid dynamics - Mathematics 606 $aFluid dynamics -- Mathematics 606 $aGravitational waves - Mathematical models 606 $aGravitational waves -- Mathematical models. Information visualization 606 $aInformation visualization 606 $aTECHNOLOGY & ENGINEERING / Imaging Systems 606 $aEngineering mathematics$xMathematics 606 $aFluid dynamics$xMathematical models 606 $aElectromagnetic fields$xMathematical models 606 $aGravitational waves 606 $aInformation visualization 606 $aEngineering & Applied Sciences$2HILCC 606 $aApplied Mathematics$2HILCC 615 4$aElectromagnetic fields - Mathematical models. 615 4$aElectromagnetic fields -- Mathematical models. 615 4$aEngineering mathematics. 615 4$aEngineering mathematics. 615 4$aFluid dynamics - Mathematics. 615 4$aFluid dynamics -- Mathematics. 615 4$aGravitational waves - Mathematical models. 615 4$aGravitational waves -- Mathematical models. Information visualization. 615 4$aInformation visualization. 615 4$aTECHNOLOGY & ENGINEERING / Imaging Systems. 615 0$aEngineering mathematics$xMathematics 615 0$aFluid dynamics$xMathematical models 615 0$aElectromagnetic fields$xMathematical models 615 0$aGravitational waves 615 0$aInformation visualization 615 7$aEngineering & Applied Sciences 615 7$aApplied Mathematics 676 $a620.001/51 676 $a620.00151 686 $aTEC015000$2bisacsh 700 $aTou$b Stephen$01597622 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910807997103321 996 $aVisualization of Fields and Applications in Engineering$93919427 997 $aUNINA