LEADER 02696oam 2200577I 450 001 9910973805803321 005 20240401192959.0 010 $a1-04-021209-3 010 $a0-429-16917-5 010 $a1-4665-9522-1 024 7 $a10.1201/b16137 035 $a(CKB)3710000000079099 035 $a(EBL)1429455 035 $a(SSID)ssj0001154541 035 $a(PQKBManifestationID)11654806 035 $a(PQKBTitleCode)TC0001154541 035 $a(PQKBWorkID)11162979 035 $a(PQKB)10561079 035 $a(MiAaPQ)EBC1429455 035 $a(OCoLC)865580408 035 $a(EXLCZ)993710000000079099 100 $a20180331h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aClassification of Lipschitz mappings /$fLukasz Piasecki 205 $a1st ed. 210 1$aBoca Raton, FL :$cCRC Press,$d[2014] 210 4$dİ2014 215 $a1 online resource (234 p.) 225 1 $aPure and applied mathematics : a series of monographs and textbooks 300 $a"A Chapman & Hall book." 311 08$a1-4665-9521-3 320 $aIncludes bibliographical references. 327 $aCover; Series; Dedication; Contents; Introduction; Chapter 1: The Lipschitz Condition; Chapter 2: Basic Facts on Banach Spaces; Chapter 3: Mean Lipschitz Condition; Chapter 4: On the Lipschitz Constants for Iterates of Mean Lipschitzian Mappings; Chapter 5: Subclasses Determined by p-averages; Chapter 6: Mean Contractions; Chapter 7: Nonexpansive Mappings in Banach Space; Chapter 8: Mean Nonexpansive Mappings; Chapter 9: Mean Lipschitzian Mappings with k > 1; Bibliography; Back Cover 330 $aClassification of Lipschitz Mappings presents a systematic, self-contained treatment of a new classification of Lipschitz mappings and its application in many topics of metric fixed point theory. Suitable for readers interested in metric fixed point theory, differential equations, and dynamical systems, the book only requires a basic background in functional analysis and topology. The author focuses on a more precise classification of Lipschitzian mappings. The mean Lipschitz condition introduced by Goebel, Japo?n Pineda, and Sims is relatively easy to check an 410 0$aMonographs and textbooks in pure and applied mathematics. 606 $aMappings (Mathematics) 606 $aTopology 615 0$aMappings (Mathematics) 615 0$aTopology. 676 $a234 700 $aPiasecki$b Lukasz$0524792 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910973805803321 996 $aClassification of Lipschitz mappings$9820749 997 $aUNINA LEADER 03497nam 22005774a 450 001 9910807975303321 005 20251116153545.0 010 $a1-281-84085-8 010 $a9786611840853 010 $a0-470-75176-2 010 $a0-470-75175-4 035 $a(CKB)1000000000555060 035 $a(EBL)366796 035 $a(OCoLC)501313848 035 $a(SSID)ssj0000127808 035 $a(PQKBManifestationID)11142260 035 $a(PQKBTitleCode)TC0000127808 035 $a(PQKBWorkID)10062328 035 $a(PQKB)11167029 035 $a(MiAaPQ)EBC366796 035 $a(Au-PeEL)EBL366796 035 $a(CaPaEBR)ebr10257625 035 $a(CaONFJC)MIL184085 035 $a(EXLCZ)991000000000555060 100 $a20080118d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aComputer modeling in bioengineering $etheoretical background, examples and software /$fMilos Kojic ... [et al.] 205 $a1st ed. 210 $aChichester, England ;$aHoboken, NJ $cJohn Wiley & Sons$dc2008 215 $a1 online resource (472 pages) 300 $aDescription based upon print version of record. 311 08$a0-470-06035-2 320 $aIncludes bibliographical references and index. 327 $aComputer Modeling in Bioengineering; Contents; Contributors; Preface; Part I Theoretical Background of Computational Methods; 1 Notation - Matrices and Tensors; 2 Fundamentals of Continuum Mechanics; 3 Heat Transfer, Diffusion, Fluid Mechanics, and Fluid Flow through Porous Deformable Media; Part II Fundamentals of Computational Methods; 4 Isoparametric Formulation of Finite Elements; 5 Dynamic Finite Element Analysis; 6 Introduction to Nonlinear Finite Element Analysis; 7 Finite Element Modeling of Field Problems; 8 Discrete Particle Methods for Modeling of Solids and Fluids 327 $aPart III Computational Methods in Bioengineering9 Introduction to Bioengineering; 10 Bone Modeling; 11 Biological Soft Tissue; 12 Skeletal Muscles; 13 Blood Flow and Blood Vessels; 14 Modeling Mass Transport and Thrombosis in Arteries; 15 Cartilage Mechanics; 16 Cell Mechanics; 17 Extracellular Mechanotransduction: Modeling Ligand Concentration Dynamics in the Lateral Intercellular Space of Compressed Airway Epithelial Cells; 18 Spider Silk: Modeling Solvent Removal during Synthetic and Nephila clavipes Fiber Spinning; 19 Modeling in Cancer Nanotechnology; Index; Plates 330 $aBioengineering is a broad-based engineering discipline that applies engineering principles and design to challenges in human health and medicine, dealing with bio-molecular and molecular processes, product design, sustainability and analysis of biological systems. Applications that benefit from bioengineering include medical devices, diagnostic equipment and biocompatible materials, amongst others. Computer Modeling in Bioengineering offers a comprehensive reference for a large number of bioengineering topics, presenting important computer modeling problems and solutions for research 606 $aBiomedical engineering$xComputer simulation 615 0$aBiomedical engineering$xComputer simulation. 676 $a610.28 701 $aKojic$b Milos$f1941-$0505535 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807975303321 996 $aComputer modeling in bioengineering$94082747 997 $aUNINA