LEADER 03399nam 2200625 450 001 9910807868703321 005 20180613002136.0 010 $a1-4704-1530-5 035 $a(CKB)3710000000230213 035 $a(EBL)3114200 035 $a(SSID)ssj0001108988 035 $a(PQKBManifestationID)11643290 035 $a(PQKBTitleCode)TC0001108988 035 $a(PQKBWorkID)11109855 035 $a(PQKB)11629100 035 $a(MiAaPQ)EBC3114200 035 $a(RPAM)17985420 035 $a(PPN)195408616 035 $a(EXLCZ)993710000000230213 100 $a20150417h20132013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSemiclassical standing waves with clustering peaks for nonlinear Schro?dinger equations /$fJaeyoung Byeon, Kazunaga Tanaka 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2013. 210 4$dİ2013 215 $a1 online resource (104 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 229, Number 1076 300 $a"Volume 229, Number 1076 (third of 5 numbers)." 311 $a0-8218-9163-4 320 $aIncludes bibliographical references. 327 $a""4.1. A choice of parameters and minimization""""4.2. Invariant new neighborhoods""; ""4.3. Width of a set I?? ( a???, a???)a???I?? ( a???, a???)""; ""Chapter 5. A gradient estimate for the energy functional""; ""5.1. -dependent concentration-compactness argument""; ""5.2. A gradient estimate""; ""5.3. Gradient flow of the energy functional I??_{ }""; ""Chapter 6. Translation flow associated to a gradient flow of ( ) on \R^{ }""; ""6.1. A pseudo-gradient flow on \overline{ }_{3 a???}( )^{a???a???} associated to ( a???)+\cdots+ ( _{a???a???})"" 327 $a""6.2. Definition of a translation operator""""6.3. Properties of the translation operator""; ""Chapter 7. Iteration procedure for the gradient flow and the translation flow""; ""Chapter 8. An ( +1)a???a???-dimensional initial path and an intersection result""; ""8.1. A preliminary path a???""; ""8.2. An initial path _{1 }""; ""8.3. An intersection property""; ""Chapter 9. Completion of the proof of Theorem 1.3""; ""Chapter 10. Proof of Proposition 8.3""; ""10.1. An interaction estimate""; ""10.2. Preliminary asymptotic estimates""; ""10.3. Proof of Proposition 10.1"" 327 $a""Chapter 11. Proof of Lemma 6.1""""Chapter 12. Generalization to a saddle point setting""; ""12.1. Saddle point setting""; ""12.2. Proof of Theorem 12.1""; ""Acknowledgments""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 229, Number 1076. 606 $aGross-Pitaevskii equations 606 $aSchro?dinger equation 606 $aStanding waves 606 $aCluster analysis 615 0$aGross-Pitaevskii equations. 615 0$aSchro?dinger equation. 615 0$aStanding waves. 615 0$aCluster analysis. 676 $a530.12/4 700 $aByeon$b Jaeyoung$f1966-$01688966 702 $aTanaka$b Kazunaga$f1959- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807868703321 996 $aSemiclassical standing waves with clustering peaks for nonlinear Schro?dinger equations$94063626 997 $aUNINA