LEADER 03373nam 2200673 450 001 9910807707203321 005 20230803031948.0 010 $a3-11-031533-5 024 7 $a10.1515/9783110315332 035 $a(CKB)2670000000495289 035 $a(EBL)1524379 035 $a(OCoLC)862612009 035 $a(SSID)ssj0001041537 035 $a(PQKBManifestationID)11681824 035 $a(PQKBTitleCode)TC0001041537 035 $a(PQKBWorkID)11010108 035 $a(PQKB)11639906 035 $a(MiAaPQ)EBC1524379 035 $a(DE-B1597)209204 035 $a(OCoLC)864085898 035 $a(DE-B1597)9783110315332 035 $a(Au-PeEL)EBL1524379 035 $a(CaPaEBR)ebr10811336 035 $a(CaONFJC)MIL808134 035 $a(EXLCZ)992670000000495289 100 $a20130725h20132013 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aSpherical and plane integral operators for PDEs $econstruction, analysis, and applications /$fKarl K. Sabelfeld, Irina A. Shalimova 210 1$aBerlin ;$aBoston :$cWalter de Gruyter GmbH & Company,$d[2013] 210 4$d©2013 215 $a1 online resource (338 p.) 300 $aDescription based upon print version of record. 311 0 $a3-11-031529-7 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tPreface --$tContents --$t1. Introduction --$t2. Scalar second-order PDEs --$t3. High-order elliptic equations --$t4. Triangular systems of elliptic equations --$t5. Systems of elasticity theory --$t6. The generalized Poisson formula for the Lamé equation --$t7. Spherical means for the stress and strain tensors --$t8. Random Walk on Spheres method --$t9. Random Walk on Fixed Spheres for Laplace and Lamé equations --$t10. A stochastic spectral projection method for solving PDEs for some classes of domains --$t11. Stochastic boundary collocation and spectral methods --$t12. Solution of 2D elasticity problems with random loads --$t13. Boundary value problems for some elliptic PDEs with random boundary conditions --$tBibliography --$tIndex 330 $aThe book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators. 606 $aDifferential equations, Partial 606 $aIntegral operators 610 $aBoundary value problems. 610 $aSpectral projection method. 610 $aSpherical integral operator. 610 $aStochastic numeric. 615 0$aDifferential equations, Partial. 615 0$aIntegral operators. 676 $a515/.353 686 $aSK 540$2rvk 700 $aSabel?fel?d$b K. K$g(Karl Karlovich)$01027546 701 $aShalimova$b I. A$01607138 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807707203321 996 $aSpherical and plane integral operators for PDEs$93933277 997 $aUNINA