LEADER 05359nam 2200841 a 450 001 9910807660703321 005 20200520144314.0 010 $a9781118562352 010 $a1118562356 010 $a9781118614006 010 $a1118614003 010 $a9781299314924 010 $a1299314929 010 $a9781118614228 010 $a1118614224 035 $a(CKB)2560000000100586 035 $a(EBL)1143509 035 $a(SSID)ssj0000833782 035 $a(PQKBManifestationID)11504756 035 $a(PQKBTitleCode)TC0000833782 035 $a(PQKBWorkID)10952617 035 $a(PQKB)10274461 035 $a(Au-PeEL)EBL1143509 035 $a(CaPaEBR)ebr10671572 035 $a(CaONFJC)MIL462742 035 $a(CaSebORM)9781118614006 035 $a(MiAaPQ)EBC1143509 035 $a(OCoLC)830161892 035 $a(OCoLC)875001632 035 $a(OCoLC)ocn875001632 035 $a(OCoLC)785721659 035 $a(FINmELB)ELB178751 035 $a(Perlego)1013089 035 $a(EXLCZ)992560000000100586 100 $a20120409d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical analysis in electromagnetics $ethe TLM method /$fPierre Saguet 205 $a1st edition 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2012 215 $a1 online resource (186 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 08$a9781848213913 311 08$a1848213913 320 $aIncludes bibliographical references (p. [161]-169) and index. 327 $aCover; Numerical Analysis in Electromagnetics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Basis of the TLM Method: the 2D TLM Method; 1.1. Historical introduction; 1.2. 2D simulation; 1.2.1. Parallel node; 1.2.2. Series node; 1.2.3. Simulation of inhomogeneous media with losses; 1.2.4. Scattering matrices; 1.2.5. Boundary conditions; 1.2.6. Dielectric interface passage conditions; 1.2.7. Dispersion of 2D nodes; 1.3. The TLM process; 1.3.1. Basic algorithm; 1.3.2. Excitation; 1.3.3. Output signal processing; Chapter 2. 3D Nodes; 2.1. Historical development 327 $a2.1.1. Distributed nodes2.1.2. Asymmetrical condensed node (ACN); 2.1.3. The symmetrical condensed node (SCN); 2.1.4. Other types of nodes; 2.2. The generalized condensed node; 2.2.1. General description; 2.2.2. Derivation of 3D TLM nodes; 2.2.3. Scattering matrices; 2.3. Time step; 2.4. Dispersion of 3D nodes; 2.4.1. Theoretical study in simple cases; 2.4.2. Case of inhomogeneous media; 2.5. Absorbing walls; 2.5.1. Matched impedance; 2.5.2. Segmentation techniques; 2.5.3. Perfectly matched layers; 2.5.4. Optimization of the PML layer profile; 2.5.5. Anisotropic and dispersive layers 327 $a2.5.6. Conclusion2.6. Orthogonal curvilinear mesh; 2.6.1. 3D TLM curvilinear cell; 2.6.2. The TLM algorithm; 2.6.3. Scattering matrices for curvilinear nodes; 2.6.4. Stability conditions and the time step; 2.6.5. Validation of the algorithm; 2.7. Non-Cartesian nodes; Chapter 3. Introduction of Discrete Elements and Thin Wires in the TLM Method; 3.1. Introduction of discrete elements; 3.1.1. History of 2D TLM; 3.1.2. 3D TLM; 3.1.3. Application example: modeling of a p-n diode; 3.2. Introduction of thin wires; 3.2.1. Arbitrarily oriented thin wire model 327 $a3.2.2. Validation of the arbitrarily oriented thin wire modelChapter 4. The TLM Method in Matrix Form and the Z Transform; 4.1. Introduction; 4.2. Matrix form of Maxwell's equations; 4.3. Cubic mesh normalized Maxwell's equations; 4.4. The propagation process; 4.5. Wave-matter interaction; 4.6. The normalized parallelepipedic mesh Maxwell's equations; 4.7. Application example: plasma modeling; 4.7.1. Theoretical model; 4.7.2. Validation of the TLM simulation; 4.8. Conclusion; APPENDICES; Appendix A. Development of Maxwell's Equations using the Z Transform with a Variable Mesh 327 $aAppendix B. Treatment of Plasma using the Z Transform for the TLM MethodBibliography; Index 330 $a The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been 410 0$aISTE 606 $aElectromagnetism$xMathematical models 606 $aTime-domain analysis 606 $aNumerical analysis 606 $aElectrical engineering$xMathematics 615 0$aElectromagnetism$xMathematical models. 615 0$aTime-domain analysis. 615 0$aNumerical analysis. 615 0$aElectrical engineering$xMathematics. 676 $a537.01/515 700 $aSaguet$b Pierre$0521531 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807660703321 996 $aNumerical analysis in Electromagnetics$9836750 997 $aUNINA