LEADER 11037nam 2200601 a 450 001 9910807456403321 005 20240410171510.0 010 $a1-61728-154-9 035 $a(CKB)2670000000041802 035 $a(EBL)3020008 035 $a(SSID)ssj0000413312 035 $a(PQKBManifestationID)12144928 035 $a(PQKBTitleCode)TC0000413312 035 $a(PQKBWorkID)10382723 035 $a(PQKB)10879051 035 $a(MiAaPQ)EBC3020008 035 $a(Au-PeEL)EBL3020008 035 $a(CaPaEBR)ebr10675016 035 $a(OCoLC)923662378 035 $a(EXLCZ)992670000000041802 100 $a20090316d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBuilding materials$b[electronic resource] $eproperties, performance and applications /$fDonald N. Cornejo and Jason L. Haro, editors 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2009 215 $a1 online resource (422 p.) 225 1 $aMaterials science and technologies series 300 $aDescription based upon print version of record. 311 $a1-60741-082-6 320 $aIncludes bibliographical references and index. 327 $aIntro -- BUILDING MATERIALS: PROPERTIES, PERFORMANCE AND APPLICATIONS -- BUILDING MATERIALS: PROPERTIES, PERFORMANCE AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 SYNTACTIC FOAMS AS BUILDING MATERIALS CONSISTING OF INORGANIC HOLLOW MICROSPHERES AND STARCH BINDER -- ABSTRACT -- 1. INTRODUCTION -- 2. CONSTITUENT MATERIALS FOR SYNTACTIC FOAMS -- 2.1. Hollow Microspheres -- 2.2. Starch as Binder -- 3. THE PRINCIPLES OF THE BUOYANCY METHOD FOR MANUFACTURING SYNTACTIC FOAMS -- 4. BEHAVIOUR OF HOLLOW MICROSPHERES IN AQUEOUS GELATINIZED STARCH -- 4.1. Lattice Models for Microsphere Dispersion in Aqueous Gelatinized Starch -- 4.2. Numerical Calculation of Minimum Inter-Microsphere Distance -- 4.3. Comparison between Theoretical and Experimental Results for VER for IBVMS -- 4.4. Starch Concentration between Microspheres and Syntactic Foam Density Estimation -- 4.5. Shrinkage after Moulding and Composition -- 5. INTERACTION BETWEEN STARCH PARTICLES AND HOLLOW MICROSPHERES IN AQUEOUS ENVIRONMENT -- 6. MECHANICAL BEHAVIOUR OF SYNTACTIC FOAMS -- 6.1. Transitions in Mechanical Behaviour -- 6.2. Relative Conditions and Rules of Mixtures -- 6.3. Mechanical Properties and Failure Behaviour -- 7. SANDWICH COMPOSITES -- 7.1. Fabrication of Syntactic Foam Panel -- 7.2. Skin Paper Preparation for Tensile Property Characterization -- 7.3. Sandwich Composite Manufacture -- 7.4. Mechanical testing and Calculations -- 7.5. Constituent Materials Behaviour -- 7.6. Sandwich Composites Behaviour -- CONCLUSION -- REFERENCES -- Chapter 2 SALT WEATHERING OF NATURAL BUILDING STONES: A REVIEW OF THE INFLUENCE OF ROCK CHARACTERISTICS -- ABSTRACT -- 1. INTRODUCTION -- 2. MINERALS AND OTHER CONSTITUENTS -- 2.1. Chemical Susceptibility -- 2.2. Physical Susceptibility -- 2.3. Deleterious Effects of Rock Constituents -- 3. TEXTURE AND STRUCTURE -- 4. PORE SPACE. 327 $a4.1. Bulk Properties -- 4.2. Pore Characteristics -- 5. STRENGTH -- 6. ALTERATION HISTORY -- 7. HETEROGENEITY -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 STUDY ON ADSORPTION AND THERMOELECTRIC COOLING SYSTEMS USING BOLTZMANN TRANSPORT EQUATION APPROACH -- ABSTRACT -- ABBRIVIATIONS -- Subscripts -- Superscripts -- 1. INTRODUCTION -- 2. GENERAL FORM OF BALANCE EQUATIONS -- 2.1. Derivation of the Thermodynamic Framework -- 2.2. Mass Balance Equation -- 2.3. Momentum Balance Equation -- 2.4. Energy Balance Equation -- 2.5. Summary of Section 2 -- 3. CONSERVATION OF ENTROPY -- 4. ADSORPTION COOLING -- 4.1. Description of Adsorption Cooling Model -- Evaporator -- Adsorption Isotherms and Kinetics -- Bed -- Condenser -- Mass Balance -- 4.2. Discussion -- 4.3. Summary of Section 4 -- 5. MACRO AND MICRO THERMOELECTRIC COOLERS -- 5.1. Thermoelectric Cooling -- 5.1.1. Energy Balance Analysis -- 5.1.2. Entropy Balance Analysis -- 5.1.3. Temperature-Entropy Plots of Bulk Thermoelectric Cooling Device -- 5.2. Transient Behavior of Thermoelectric Cooler -- 5.2.1. Derivation of the T-S Relation -- 5.2.2. Discussion -- 5.2.3. Summary of Section 5.2 -- 5.3. Microscopic Analysis: Super-Lattice Type Devices -- 5.3.1. Thermodynamic Modeling for Thin-Film Thermoelectrics -- 5.3.2. Discussion -- 5.3.3. Summary of Section 5.3 -- CONCLUSIONS -- APPENDIX. GAUSS THEOREM APPROACH -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 4 MICROBES AND BUILDING MATERIALS -- ABSTRACT -- 1. INTRODUCTION -- 2. MICROORGANISMS COLONIZING ROCK, PLASTER, MORTAR, PAINT COATINGS, PLASTER BOARD AND OTHER BUILDING MATERIALS -- 2.1. Scenario of Microbial Settlement in Building Materials and Monuments -- 2.2. Bacteria -- 2.3. Fungi -- 2.4. Cyanobaceria and Algae -- 2.5. Lichens. 327 $a3. MECHANISMS AND DESTRUCTION PHENOMENA CAUSED BY MICROBES RANGING FROM MERE ESTHETICAL SPOILAGE TO SIGNIFICANT MATERIAL LOSSES -- 4. ENVIRONMENTAL FACTORS - HUMIDITY, VENTILATION, NUTRIENT AVAILABILITY - ENHANCING OR INHIBITING MICROBIAL GROWTH -- 5. STATE OF THE ART: METHODS FOR DETECTION AND ANALYSIS OF BIODETERIORATIVE ORGANISMS, ESPECIALLY HIGHLIGHTING THE MOLECULAR TECHNIQUES -- 5.1. Culture-Dependent Strategy -- 5.1.1. Microscopy Techniques -- 5.2. Molecular Strategy -- 5.2.1. Extraction of Nucleic Acids from Collected Samples -- 5.2.2. PCR Amplification of Target Genes -- 5.2.3. Genotyping Techniques-Fingerprinting -- 5.2.4. Creation of Clone Libraries and Sequence Analysis -- 5.2.5. In Situ-Hybridization Analysis -- 5.2.6. RNA-Based Molecular Analyses -- 5.3. Culture-Dependent Versus Culture-Independent Techniques -- 6. POSSIBLE STRATEGIES FOR ANTIMICROBIAL TREATMENTS AND PREVENTIVE MEASURES WITH FOCUS ON PROS AND CONS OF HYDROPHOBIC TREATMENTS, NANO-TECHNOLOGY BASED PAINT COATINGS AND NOVEL DISINFECTANTS -- 6.1. Cleaning and Biocide Treatments -- 6.2. Consolidants, Coatings and Hydrophobic Treatment -- 6.3. Cementations, Fillings, Substitutes, Artificial Material -- REFERENCES -- Chapter 5 DETERMINATION OF MOISTURE TRANSPORT AND STORAGE PROPERTIES OF BUILDING MATERIALS -- 1. INTRODUCTION -- 2. DETERMINATION OF MOISTURE DIFFUSIVITY -- 2.1. Slice-Dry-Weigh Method -- 2.2. Gamma-Ray Attenuation -- 2.3. Neutron Radiography -- 2.4. Nuclear Magnetic Resonance -- 2.5. Computer Tomography -- 3. EVALUATION OF ISOTHERMAL MOISTURE TRANSPORT COEFFICIENTS -- 3.1. Gravimetric Sorption-Desorption Method (LEPTAB) -- Describe of the Method -- Experimental Study -- Materials and Conservation -- Isothermal Absorption-Desportion Tests (Belarbi Et Al. 2006) -- 2.1.5. Measurement Results -- Discussions -- 3.2. Cup Method (DBM) -- Experimental Set-Up. 327 $aMeasured Results -- 4. EVALUATION OF THE TEMPERATURE GRADIENT COEFFICIENT -- 4.1. Description -- 4.2. Experimental Set-Up -- Materials and Preparations -- Tests and Measurements -- 4.3. Measurement Results -- 5. DETERMINATION OF THE SORPTION ISOTHERMS OF LIME-CEMENT MORTAR -- 5.1. Experimental Set-Up -- 5.2. Measurement Results -- CONCLUSIONS -- REFERENCES -- Chapter 6 BUILDING MATERIALS AND ACOUSTIC COMFORT: SIMULATIONS, MEASUREMENTS AND APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. SOUND INSULATION - SOUND INSULATION INDEX - ACOUSTICS DEFINITIONS -- 3. FIELD MEASUREMENTS AND SIMULATION OF THE SOUND INSULATION INDEX -- 4. MEASUREMENTS AND APPLICATIONS -- Home 1 -- Home 2 -- Home 3 -- Home 4 -- Home 5 -- Home 6 -- Home 7 -- Home 8 -- CONCLUSIONS -- REFERENCES -- Chapter 7 RADON EXHALATION RATES OF BUILDING MATERIALS: EXPERIMENTAL, ANALYTICAL PROTOCOL AND CLASSIFICATION CRITERIA -- ABSTRACT -- INTRODUCTION -- EXPERIMENTAL SET-UP -- VALIDATION TEST -- EXHALATION RATES CALCULATION -- Radon Exhalation Calculation -- Thoron Exhalation Calculations -- THE INFLUENCE OF TEMPERATURE ON RADON EXHALATION RATES -- GUIDELINES TO SET A STANDARD PROTOCOL TO MEASURE RADON EXHALATION RATES -- Exhalation Rates of Building Materials and Proposal of a Classification Scheme -- CONCLUSION -- REFERENCES -- Chapter 8 HIGH TEMPERATURES BEHAVIOR OF MASONRY STRUCTURES: MODELIZATION AND PARAMETRIC STUDY -- ABSTRACT -- NOMENCLATURE -- 1. INTRODUCTION -- 2. THEORETICAL ASPECTS OF THE HYDRO-THERMAL MODEL -- 2.1. The model's Hypothesis -- 2.2. Constitutive Equations -- 2.2.1. Conservation Laws -- 2.2.1.a. Liquid Water Mass Conservation -- 2.2.1.b. Vapor Mass Conservation -- 2.2.1.c. Dry Air Mass Conservation -- 2.2.1.d. Entropy Equation -- 2.2.2. Constitutive Equations -- 2.2.2.a. Darcy's Law for Liquid Water Flow -- 2.2.2.b. Darcy's Law for Gas Mixture Flow. 327 $a2.2.2.c. Fick's Laws -- 2.2.2.d. Fourier's Law -- 2.2.2.e. Liquid Vapor Phase-Change Law -- 2.2.3. State Equations -- 3. GOVERNING EQUATIONS OF THE HYDRO-THERMAL MODEL -- 3.1. Water and Vapor Mass Diffusion -- 3.2. Dry Air Mass Diffusion -- 3.3. Energy Diffusion -- 4. NUMERICAL FORMULATION OF THE MODEL -- 4.1. Presentation of Equations Under Matrix Form -- 4.2. Finite Volume Discretization -- 4.2.1. Principle of the Finite Volume Method -- 4.2.2. Discretization of Model's Equations -- 5. NUMERICAL SIMULATIONS AND EXPERIMENTAL TESTS -- 5.1. Experimental Test Description -- 5.2. Thermal Boundary Conditions -- 5.2.1. Face Exposed to Fire -- 5.2.2. Face Non Exposed to Fire -- 5.3. Hydrous Boundary Conditions -- 5.4. Numerical Simulation -- 5.4.1. Drying a Thin Wall by Elevated Temperatures -- 5.4.2. Material Properties -- 5.5. Results and Discussions -- 5.5.1. Comparison between Theoretical and Experimental Results -- 5.5.2. Numerical Results -- 5.5.1.a. Temperature Evolution -- 5.5.1.b. Vapor Pressure Evolution -- 5.6. Effects of Some Parameters on the Hydro-Thermal Response of Thin Wall -- 5.6.1. Initial Water Content Effect -- 5.6.2. Intrinsic Permeability Effect -- 5.6.3. Effect of the Form of Isotherm Sorption Curve -- CONCLUSIONS -- ACKNOWLEDGEMENTS -- APPENDIX 1. -- APPENDIX 2. COMPONENTS RESULTING FROM THE EQUATIONS REPRESENTED UNDER THE MATRIX FORM -- APPENDIX 3. VARIATION OF DIFFERENT PHYSICAL UNITS -- REFERENCES -- Chapter 9 AGRICULTURAL WASTES AS BUILDING MATERIALS: PROPERTIES, PERFORMANCE AND APPLICATIONS -- ABSTRACT -- INTRODUCTION -- VEGETABLE FIBERS AS NON-CONVENTIONAL BUILDING MATERIAL -- PHOSPHOGYPSUM AS NON-CONVENTIONAL BUILDING MATERIAL -- VEGETABLE FIBER-CEMENT: COMPONENT, COMPOSITE, AND PERFORMANCE -- ROOFING TILES -- Improving Tiles Performance By Accelerated Carbonation -- Thermal Properties of Undulated Tiles. 327 $aSTRATEGIES FOR IMPROVING THE PERFORMANCE OF THE COMPOSITES. 410 0$aMaterials science and technologies series. 606 $aBuilding materials 615 0$aBuilding materials. 676 $a624.1/8 701 $aCornejo$b Donald N$01666894 701 $aHaro$b Jason L$01666895 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807456403321 996 $aBuilding materials$94026403 997 $aUNINA