LEADER 04416nam 2200625 450 001 9910807367303321 005 20180613001217.0 010 $a1-4704-2039-2 035 $a(CKB)3150000000020209 035 $a(EBL)3114289 035 $a(SSID)ssj0001366612 035 $a(PQKBManifestationID)11766216 035 $a(PQKBTitleCode)TC0001366612 035 $a(PQKBWorkID)11425909 035 $a(PQKB)10913734 035 $a(MiAaPQ)EBC3114289 035 $a(RPAM)18071160 035 $a(PPN)197102700 035 $a(EXLCZ)993150000000020209 100 $a20150416h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aRamanujun 125 $einternational conference to commemorate the 125th anniversary of Ramanujan's birth, Ramanujan 125, November 5-7, 2012, University of Florida, Gainesville, Florida /$fKrishnaswami Alladi, Frank Garvan, Ae Ja Yee, editors 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2014. 210 4$dİ2014 215 $a1 online resource (174 p.) 225 1 $aContemporary Mathematics,$x1098-3627 ;$v327 300 $a"Conference in honor of Indian mathematician Srinivasa Ramanujan Aiyangar". 311 $a1-4704-1078-8 320 $aIncludes bibliographical references at the end of each chapters. 327 $a""Cover""; ""Title page""; ""Contents""; ""Preface""; ""Hecke grids and congruences for weakly holomorphic modular forms""; ""1. Introduction""; ""2. Preliminaries""; ""3. Hecke grids on I??*(1)""; ""4. Hecke grids on I??*(2)""; ""5. Hecke grids on I??*(3)""; ""6. Hecke grids on I??*(4)""; ""References""; ""Knots and -series""; ""1. Introduction""; ""2. Background""; ""3. Proof of (1.5)""; ""4. Proof of (1.6)""; ""5. Proof of (1.7)""; ""6. The -series for the 8a??? knot.""; ""7. Conclusion""; ""References""; ""A partition inequality involving products of two -Pochhammer symbols"" 327 $a""1. Introduction""""2. Notation""; ""3. The Injection""; ""4. The Inverse""; ""5. Examples""; ""6. Proofs of the Dual and the Generalization""; ""7. Two Invariants of the Injections""; ""8. Conclusion""; ""Acknowledgements""; ""References""; ""Analogues of Koshliakova???s formula""; ""1. Introduction""; ""2. Preliminary Results""; ""3. Analogues of Koshliakova???s Formula""; ""References""; ""How to prove Ramanujana???s -continued fractions""; ""1. Introduction""; ""2. Eulera???s approach""; ""3. The Rogers-Ramanujan Continued Fraction""; ""4. Convergence matters"" 327 $a""5. More continued fractions by Eulera???s approach""""6. The role of transformation formulas""; ""7. A dose of insight into algebraical formulae""; ""8. Infinite products as continued fractions""; ""9. Conclusion""; ""References""; ""A nonsingular a??? curve of genus 4""; ""1. Introduction""; ""2. Definition of the Surface""; ""3. Inversion of Thomaea???s Formulas and Other Identities""; ""References""; ""Ramanujana???s radial limits""; ""1. Introduction and Statement of Results""; ""Acknowledgements""; ""2. Sketch of the proof of Theorem 1.2""; ""3. Proof of Theorem 1.3"" 327 $a""4. Discussion related to Theorem 1.3""""References""; ""An identity that may have changed the course of history""; ""1. Introduction""; ""2. Jacobia???s triple product identity""; ""3. An important special case of Jacobia???s triple product identity""; ""4. Obtaining Ramanujana???s identity""; ""5. Additional comments""; ""6. Notice""; ""References""; ""The major index generating function of standard Young tableaux of shapes of the form a???staircase minus rectanglea???""; ""1. Introduction""; ""2. The main result"" 327 $a""1. Mathematical Background"" 410 0$aContemporary mathematics (American Mathematical Society) ;$v627. 606 $aFunctions, Theta$vCongresses 606 $aLie algebras$vCongresses 615 0$aFunctions, Theta 615 0$aLie algebras 676 $a512.7 686 $a05A19$a11A25$a11E25$a11F33$a11F37$a11P84$a14K25$a17B67$a30B70$a33D15$2msc 702 $aGarvan$b Frank$g(Frank G.),$f1955- 702 $aAlladi$b Krishnaswami 702 $aYee$b Ae Ja$f1971- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807367303321 996 $aRamanujun 125$93977699 997 $aUNINA