LEADER 04266nam 2200673 450 001 9910807284803321 005 20230803201927.0 010 $a1-118-57910-0 010 $a1-118-57912-7 035 $a(CKB)3710000000093422 035 $a(EBL)1650824 035 $a(SSID)ssj0001216219 035 $a(PQKBManifestationID)11720705 035 $a(PQKBTitleCode)TC0001216219 035 $a(PQKBWorkID)11189346 035 $a(PQKB)10313902 035 $a(MiAaPQ)EBC1650824 035 $a(Au-PeEL)EBL1650824 035 $a(CaPaEBR)ebr10849205 035 $a(CaONFJC)MIL584487 035 $a(OCoLC)892194606 035 $a(EXLCZ)993710000000093422 100 $a20140325h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntracorporeal robotics $efrom milliscale to nanoscale /$fMichae?l Gauthier, Nicolas Andreff, Dombre Etienne 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (200 p.) 225 0 $aRobotics Series 300 $aDescription based upon print version of record. 311 $a1-84821-371-9 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Introduction; Chapter 1 Intracorporeal Millirobotics; 1.1. Introduction; 1.2. Principles; 1.2.1. Partially intracorporeal devices with active distal mobilities; 1.2.2. Intracorporeal manipulators; 1.2.3. Intracorporeal mobile devices; 1.3. Scientific issues; 1.3.1. Modeling; 1.3.2. Design; 1.3.3. Actuation and transmission; 1.3.4. Sensing; 1.3.5. Control; 1.4. Examples of devices; 1.4.1. The robotic platform of the Araknes project; 1.4.2. A snake-like robot made of concentric super-elastic tubes 327 $a1.4.3. MICRON: a handheld robotized instrument for ophthalmic surgery1.5. Conclusion; Chapter 2 Intracorporeal Microrobotics; 2.1. Introduction; 2.2. Novel paradigms for intracorporeal robotics; 2.2.1. Classification of intracorporeal robots; 2.2.2. Physical principles in use at microscale; 2.3. Methods; 2.3.1. Models; 2.3.2. Design; 2.3.3. Actuation; 2.3.4. Sensing; 2.3.5. Control; 2.4. Devices; 2.4.1. Magnetically guided catheters; 2.4.2. Distal tip mobility for endoluminal microphonosurgery; 2.4.3. Autonomous active capsules; 2.4.4. Magnetically guided capsules; 2.5. Conclusion 327 $aChapter 3 Non-Contact Mesorobotics3.1. Introduction; 3.2. Principles; 3.2.1. Introduction; 3.2.2. Laser trapping; 3.2.3. Electrostatic principles; 3.3. Scientific challenges; 3.3.1. Modeling; 3.3.2. Design; 3.3.3. Perception; 3.3.4. Control; 3.4. Experimental devices; 3.4.1. Laser trapping; 3.4.2. DEP systems; 3.5. Conclusion; Chapter 4 Toward Biomedical Nanorobotics; 4.1. Applicative challenges; 4.1.1. In vitro applications; 4.1.2. Nanoassembly for biomedical applications; 4.1.3. In vivo applications; 4.2. Scientific challenges; 4.2.1. New paradigm removing frontiers between sciences 327 $a4.2.2. Energy sources4.2.3. How far away is this future?; Bibliography; Index 330 $a A promising long-term evolution of surgery relies on intracorporeal microrobotics. This book reviews the physical and methodological principles, and the scientific challenges to be tackled to design and control such robots. Three orders of magnitude will be considered, justified by the class of problems encountered and solutions implemented to manipulate objects and reach targets within the body: millimetric, sub-millimetric in the 10- 100 micrometer range, then in the 1-10 micrometer range. The most prominent devices and prototypes of the state of the art will be described to illustrate th 410 0$aISTE 606 $aRobotics 606 $aRobots$xDesign and construction 606 $aMicrorobots 615 0$aRobotics. 615 0$aRobots$xDesign and construction. 615 0$aMicrorobots. 676 $a629.892 700 $aGauthier$b Michael$01705774 702 $aAndreff$b Nicolas 702 $aEtienne$b Dombre 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807284803321 996 $aIntracorporeal robotics$94092761 997 $aUNINA