LEADER 05270nam 22006611 450 001 9910806929603321 005 20240401173949.0 010 $a3-527-65624-3 010 $a3-527-65622-7 010 $a3-527-65625-1 035 $a(CKB)2550000001117150 035 $a(EBL)1388819 035 $a(OCoLC)858654466 035 $a(SSID)ssj0001154670 035 $a(PQKBManifestationID)11719283 035 $a(PQKBTitleCode)TC0001154670 035 $a(PQKBWorkID)11162799 035 $a(PQKB)10054056 035 $a(MiAaPQ)EBC1388819 035 $a(Au-PeEL)EBL1388819 035 $a(CaPaEBR)ebr10762534 035 $a(CaONFJC)MIL517588 035 $a(PPN)224991213 035 $a(EXLCZ)992550000001117150 100 $a20131006d2014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCollisionless plasmas in astrophysics /$fGerard Belmont [and four others] 205 $a1st ed. 210 1$aHoboken, New Jersey :$cJohn Wiley & sons,$d2014. 215 $a1 online resource (427 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41074-0 311 $a1-299-86337-X 320 $aIncludes bibliographical references and index. 327 $aCollisionless Plasmas in Astrophysics; Contents; About the Authors; 1 Introduction; 1.1 Goals of the Book; 1.2 Plasmas in Astrophysics; 1.2.1 Plasmas Are Ubiquitous; 1.2.2 The Magnetosphere of Stars; 1.2.3 Shock Waves; 1.2.4 Planetary Magnetospheres; 1.3 Upstream of Plasma Physics: Electromagnetic Fields and Waves; 1.3.1 Electromagnetic Fields; 1.3.2 Transverse and Longitudinal Electromagnetic Field; 1.3.3 Electromagnetic Fields in Vacuum; 1.3.4 Plane Waves in a Plasma; 1.3.5 Electromagnetic Components of Plane Plasma Waves 327 $a1.3.6 Some General Properties of Plane Wave Polarization and Dispersion1.3.7 Electrostatic Waves; 1.3.8 Wave Packets and Group Velocity; 1.3.9 Propagation of Plane Waves in a Weakly Inhomogeneous Medium; 1.3.10 Useful Approximations of the Maxwell Equations in Plasma Physics; 1.4 Upstream of Plasma Physics: The Motion of Charged Particles; 1.4.1 The Motion of the Guiding Center; 1.4.2 Adiabatic Invariants; 1.4.3 The Motion of a Particle in a Wave; 2 Plasma Descriptions and Plasma Models; 2.1 Distribution Function and Moments; 2.1.1 From Individual Particles to Kinetic Description 327 $a2.1.2 Kinetic Description and First Order Moments2.1.3 Higher-Order Moments; 2.1.4 Moments for a Mixture of Populations; 2.1.5 Nontrivial Generalization of the Fluid Concepts; 2.1.6 Fluid vs. Kinetic Description: An Example; 2.2 From Kinetic to Fluid Equations; 2.2.1 Moment Equations; 2.2.2 Lagrangian Form of the Moment Equations; 2.2.3 Fluid Equations: Necessity of a Closure Equation; 2.2.4 Collisional Limit: Fluid Dynamics and Thermodynamics; 2.3 Numerical Methods; 2.3.1 Vlasov Codes; 2.3.2 Particle in Cell Codes (PIC); 2.3.3 Perturbative PIC Codes; 2.4 Fluid Codes; 2.5 Hybrid Codes 327 $a3 The Magnetized Plasmas3.1 Ideal MHD; 3.1.1 The Ideal MHD System; 3.1.2 The Ideal Ohm's Law; 3.2 Establishing the MHD Model; 3.2.1 Large-Scale Conditions of Validity; 3.2.2 Departures from MHD: Multi-Fluid and Kinetic Effects; 3.3 Dimensional Analysis and Plasma Characteristic Scales; 3.3.1 Dimensional Analysis: The General Methods; 3.3.2 Temporal and Spatial Scales, Adimensional Numbers; 3.3.3 Dispersive and Dissipative Effects; 3.3.4 Physical Importance of the Dimensionless Parameters; 4 Collisional-Collisionless; 4.1 Notion of Collisions in Plasma Physics 327 $a4.1.1 Coulomb Interaction: A Long Range Interaction4.1.2 Mean Free Path; 4.1.3 The Debye Length and the Notion of Debye "Screening"; 4.1.4 Knudsen Number; 4.1.5 Plasma Regimes; 4.2 Notion of Dissipation; 4.2.1 Transfers of Energy and Dissipation; 4.2.2 The Concept of Dissipation in Collisional Fluids; 4.2.3 Reversibility; 4.2.4 Irreversibility and Damping; 4.2.5 The Notion of Reversibility Depends on the Description; 4.2.6 Entropy; 5 Waves in Plasmas; 5.1 MHD Waves; 5.1.1 Polarization of the MHD Waves; 5.1.2 Application: Alfve?n and MHD Waves in the Earth's Magnetosphere 327 $a5.2 Transport Induced by Waves 330 $a Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustration 606 $aCollisionless plasmas 606 $aPlasma astrophysics 615 0$aCollisionless plasmas. 615 0$aPlasma astrophysics. 676 $a530.446 700 $aBelmont$b Gerard$01685554 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910806929603321 996 $aCollisionless plasmas in astrophysics$94057788 997 $aUNINA