LEADER 03701nam 2200613 450 001 9910806186303321 005 20180613001258.0 010 $a1-4704-0114-2 035 $a(CKB)3360000000464719 035 $a(EBL)3113936 035 $a(SSID)ssj0000888821 035 $a(PQKBManifestationID)11453144 035 $a(PQKBTitleCode)TC0000888821 035 $a(PQKBWorkID)10865679 035 $a(PQKB)10803194 035 $a(MiAaPQ)EBC3113936 035 $a(RPAM)2068516 035 $a(PPN)195414187 035 $a(EXLCZ)993360000000464719 100 $a20140909h19941994 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChristoffel functions and orthogonal polynomials for exponential weights on [?1, 1] /$fA. L. Levin, D. S. Lubinsky 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1994. 210 4$d©1994 215 $a1 online resource (166 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 535 300 $a"September 1994, Volume 111, Number 535 (fourth of 5 numbers)." 311 $a0-8218-2599-2 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""A?1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""A?2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for I?»[sub(n)]"" 327 $a""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""A?5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""A?6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""A?7. Lower Bounds for I?»[sub(n)]""; ""Theorem 7.1: Lower Bounds for I??[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1"" 327 $a""A?8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for I??[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for I??[sub(j)]""; ""Lemma 8.6: Estimates for I??[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2"" 327 $a""Lemma 11.5: An Estimate for I[sub(3)]"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 535. 606 $aOrthogonal polynomials 606 $aChristoffel-Darboux formula 606 $aConvergence 615 0$aOrthogonal polynomials. 615 0$aChristoffel-Darboux formula. 615 0$aConvergence. 676 $a515/.55 700 $aLevin$b A. L.$f1944-$0768216 702 $aLubinsky$b D. S$g(Doron Shaul),$f1955- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910806186303321 996 $aChristoffel functions and orthogonal polynomials for exponential weights on$94058294 997 $aUNINA