LEADER 03058nam 22006615 450 001 9910805577503321 005 20240619194134.0 010 $a3-031-49654-X 024 7 $a10.1007/978-3-031-49654-7 035 $a(MiAaPQ)EBC31074400 035 $a(Au-PeEL)EBL31074400 035 $a(DE-He213)978-3-031-49654-7 035 $a(CKB)30020041600041 035 $a(EXLCZ)9930020041600041 100 $a20240119d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNoncommutative Integration and Operator Theory /$fby Peter G. Dodds, Ben de Pagter, Fedor A. Sukochev 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Birkhäuser,$d2023. 215 $a1 online resource (583 pages) 225 1 $aProgress in Mathematics,$x2296-505X ;$v349 311 08$aPrint version: Dodds, Peter G. Noncommutative Integration and Operator Theory Cham : Springer International Publishing AG,c2024 9783031496530 330 $aThe purpose of this monograph is to provide a systematic account of the theory of noncommutative integration in semi-finite von Neumann algebras. It is designed to serve as an introductory graduate level text as well as a basic reference for more established mathematicians with interests in the continually expanding areas of noncommutative analysis and probability. Its origins lie in two apparently distinct areas of mathematical analysis: the theory of operator ideals going back to von Neumann and Schatten and the general theory of rearrangement invariant Banach lattices of measurable functions which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases. 410 0$aProgress in Mathematics,$x2296-505X ;$v349 606 $aOperator theory 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aFunctional analysis 606 $aOperator Theory 606 $aGlobal Analysis and Analysis on Manifolds 606 $aFunctional Analysis 606 $aÀlgebres de Banach$2thub 606 $aTeoria d'operadors$2thub 608 $aLlibres electrònics$2thub 615 0$aOperator theory. 615 0$aGlobal analysis (Mathematics). 615 0$aManifolds (Mathematics). 615 0$aFunctional analysis. 615 14$aOperator Theory. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aFunctional Analysis. 615 7$aÀlgebres de Banach 615 7$aTeoria d'operadors 676 $a515.724 700 $aDodds$b Peter G$01589036 701 $ade Pagter$b Ben$01589037 701 $aSukochev$b Fedor A$01589038 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910805577503321 996 $aNoncommutative Integration and Operator Theory$93883268 997 $aUNINA