LEADER 03826nam 22007575 450 001 9910799217003321 005 20231228062520.0 010 $a3-031-47647-6 024 7 $a10.1007/978-3-031-47647-1 035 $a(CKB)29476472900041 035 $a(DE-He213)978-3-031-47647-1 035 $a(MiAaPQ)EBC31046024 035 $a(Au-PeEL)EBL31046024 035 $a(EXLCZ)9929476472900041 100 $a20231228d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Strontium Molecular Lattice Clock$b[electronic resource] $eVibrational Spectroscopy with Hertz-Level Accuracy /$fby Kon H. Leung 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (XV, 161 p. 57 illus., 53 illus. in color.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 311 08$a9783031476464 327 $aChapter 1: Introduction -- Chapter 2: Molecular structure and production of ultracold 88Sr2 in an optical lattice -- Chapter 3: Frequency comb assisted spectroscopy of the states -- Chapter 4: Ultracold 88Sr2 molecules in the absolute ground state -- Chapter 5: Terahertz vibrational molecular clock. 330 $aThis thesis describes how the rich internal degrees of freedom of molecules can be exploited to construct the first ?clock? based on ultracold molecules, rather than atoms. By holding the molecules in an optical lattice trap, the vibrational clock is engineered to have a high oscillation quality factor, facilitating the full characterization of frequency shifts affecting the clock at the hertz level. The prototypical vibrational molecular clock is shown to have a systematic fractional uncertainty at the 14th decimal place, matching the performance of the earliest optical atomic lattice clocks. As part of this effort, deeply bound strontium dimers are coherently created, and ultracold collisions of these Van der Waals molecules are studied for the first time, revealing inelastic losses at the universal rate. The thesis reports one of the most accurate measurements of a molecule?s vibrational transition frequency to date. The molecular clock lays the groundwork for explorations into terahertz metrology, quantum chemistry, and fundamental interactions at atomic length scales. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 606 $aAtoms 606 $aMolecules 606 $aMetrology 606 $aMolecular spectroscopy 606 $aLasers 606 $aMeasurement 606 $aMeasuring instruments 606 $aQuantum chemistry 606 $aAtoms and molecules in external fields 606 $aMetrology and Fundamental Constants 606 $aMolecular Spectroscopy 606 $aLaser 606 $aMeasurement Science and Instrumentation 606 $aQuantum Chemistry 615 0$aAtoms. 615 0$aMolecules. 615 0$aMetrology. 615 0$aMolecular spectroscopy. 615 0$aLasers. 615 0$aMeasurement. 615 0$aMeasuring instruments. 615 0$aQuantum chemistry. 615 14$aAtoms and molecules in external fields. 615 24$aMetrology and Fundamental Constants. 615 24$aMolecular Spectroscopy. 615 24$aLaser. 615 24$aMeasurement Science and Instrumentation. 615 24$aQuantum Chemistry. 676 $a539 700 $aLeung$b Kon H$4aut$4http://id.loc.gov/vocabulary/relators/aut$01586291 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910799217003321 996 $aThe Strontium Molecular Lattice Clock$93872634 997 $aUNINA