LEADER 05380nam 2200649 a 450 001 9910457299503321 005 20200520144314.0 010 $a1-280-96441-3 010 $a9786610964413 010 $a0-08-047050-5 035 $a(CKB)1000000000349923 035 $a(EBL)286754 035 $a(OCoLC)437176623 035 $a(SSID)ssj0000155266 035 $a(PQKBManifestationID)11151521 035 $a(PQKBTitleCode)TC0000155266 035 $a(PQKBWorkID)10112529 035 $a(PQKB)11325758 035 $a(MiAaPQ)EBC286754 035 $a(CaSebORM)9780750678285 035 $a(Au-PeEL)EBL286754 035 $a(CaPaEBR)ebr10167014 035 $a(EXLCZ)991000000000349923 100 $a20041227d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe finite element method in engineering$b[electronic resource] /$fSingiresu S. Rao 205 $a4th ed. 210 $aAmsterdam ;$aBoston, MA $cElsevier/Butterworth Heinemann$dc2005 215 $a1 online resource (685 p.) 300 $aDescription based upon print version of record. 311 $a0-7506-7828-3 320 $aIncludes bibliographical references and index. 327 $aFront Cover; The Finite Element Method in Engineering; Copyright Page; Contents; Preface; Principal Notation; PART 1: INTRODUCTION; Chapter 1. Overview of Finite Element Method; 1.1 Basic Concept; 1.2 Historical Background; 1.3 General Applicability of the Method; 1.4 Engineering Applications of the Finite Element Method; 1.5 General Description of the Finite Element Method; 1.6 Comparison of Finite Element Method with Other Methods of Analysis; 1.7 Finite Element Program Packages; References; Problems; PART 2: BASIC PROCEDURE; Chapter 2. Discretization of the Domain; 2.1 Introduction 327 $a2.2 Basic Element Shapes2.3 Discretization Process; 2.4 Node Numbering Scheme; 2.5 Automatic Mesh Generation; References; Problems; Chapter 3. Interpolation Models; 3.1 Introduction; 3.2 Polynomial Form of Interpolation Functions; 3.3 Simplex, Complex, and Multiplex Elements; 3.4 Interpolation Polynomial in Terms of Nodal Degrees of Freedom; 3.5 Selection of the Order of the Interpolation Polynomial; 3.6 Convergence Requirements; 3.7 Linear Interpolation Polynomials in Terms of Global Coordinates; 3.8 Interpolation Polynomials for Vector Quantities 327 $a3.9 Linear Interpolation Polynomials in Terms of Local CoordinatesReferences; Problems; Chapter 4. Higher Order and Isoparametric Elements; 4.1 Introduction; 4.2 Higher Order One-Dimensional Elements; 4.3 Higher Order Elements in Terms of Natural Coordinates; 4.4 Higher Order Elements in Terms of Classical Interpolation Polynomials; 4.5 One-Dimensional Elements Using Classical Interpolation Polynomials; 4.6 Two-Dimensional (Rectangular) Elements Using Classical Interpolation Polynomials; 4.7 Continuity Conditions; 4.8 Comparative Study of Elements; 4.9 Isoparametric Elements 327 $a4.10 Numerical IntegrationReferences; Problems; Chapter 5. Derivation of Element Matrices and Vectors; 5.1 Introduction; 5.2 Direct Approach; 5.3 Variational Approach; 5.4 Solution of Equilibrium Problems Using Variational (Rayleigh-Ritz) Method; 5.5 Solution of Eigenvalue Problems Using Variational (Rayleigh-Ritz) Method; 5.6 Solution of Propagation Problems Using Variational (Rayleigh-Ritz) Method; 5.7 Equivalence of Finite Element and Variational (Rayleigh-Ritz) Methods; 5.8 Derivation of Finite Element Equations Using Variational (Rayleigh-Ritz) Approach; 5.9 Weighted Residual Approach 327 $a5.10 Solution of Eigenvalue Problems Using Weighted Residual Method5.11 Solution of Propagation Problems Using Weighted Residual Method; 5.12 Derivation of Finite Element Equations Using Weighted Residual (Galerkin) Approach; 5.13 Derivation of Finite Element Equations Using Weighted Residual (Least Squares) Approach; References; Problems; Chapter 6. Assembly of Element Matrices and Vectors and Derivation of System Equations; 6.1 Coordinate Transformation; 6.2 Assemblage of Element Equations; 6.3 Computer Implementation of the Assembly Procedure; 6.4 Incorporation of Boundary Conditions 327 $a6.5 Incorporation of Boundary Conditions in the Computer Program 330 $aFinite Element Analysis is an analytical engineering tool developed in the 1960's by the Aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. It is an extension of derivative and integral calculus, and uses very large matrix arrays and mesh diagrams to calculate stress points, movement of loads and forces, and other basic physical behaviors. Students will find in this textbook a thorough grounding of the mathematical principles underlying the popular, analytical methods for setting up a finite element solution based on those math 606 $aFinite element method 606 $aEngineering mathematics 608 $aElectronic books. 615 0$aFinite element method. 615 0$aEngineering mathematics. 676 $a620.001/51825 700 $aRao$b S. S$0556950 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457299503321 996 $aFinite element method in engineering$9987247 997 $aUNINA LEADER 03342nam 2200565 450 001 9910798516003321 005 20230808194642.0 010 $a1-4758-2644-3 035 $a(CKB)3710000000777501 035 $a(EBL)4622998 035 $a(OCoLC)956647953 035 $a(PQKBManifestationID)16510331 035 $a(PQKBWorkID)15039357 035 $a(PQKB)22334735 035 $a(MiAaPQ)EBC4622998 035 $a(DLC) 2016031507 035 $a(EXLCZ)993710000000777501 100 $a20160901h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCulturally affirming literacy practices for urban elementary students /$fedited by Lakia M. Scott and Barbara Purdum-Cassidy 210 1$aLanham, Maryland :$cRowman & Littlefield Publishers,$d2016. 210 4$dİ2016 215 $a1 online resource (212 p.) 300 $aDescription based upon print version of record. 311 $a1-4758-2642-7 311 $a1-4758-2641-9 320 $aIncludes bibliographical references and index. 327 $aContents; Foreword; Acknowledgments; 1 Introduction: A Continued Era of Language Discrimination; 2 A Framework for Critical Social Justice Literacy in Urban Elementary Schools; 3 Reauthorizing Excellence in Literacy Teaching for African American Learners; 4 Harambee!; 5 Beyond Basic Instruction; 6 Affirming the Identities of English Learners through Purposeful, Project-Based Literacy Instruction; 7 Using Critical Pedagogies for Increasing English Language Learners' Reading and Writing Achievement; 8 How Does Your Garden Grow?; 9 Culturally Relevant Texts and Urban English Language Learners 327 $a10 Moving beyond Apartheid Schooling and "Adequate Education"11 "Started from the Bottom Now We Here"; 12 Teaching with Technology; 13 Preparing Pre-Service Teachers for Differentiation via Instructional Technology; 14 Professional Development and Classroom Resources for the Urban Elementary Literacy Educator; Index; About the Editors; About the Contributors 330 $aCulturally Affirming Literacy Practices for Urban Elementary Students provides practical insights guided by conceptual and contextual knowledge in understanding how to teach urban African American and Hispanic/Latino(a) students by discussing issues associated with critical pedagogies, literacy, and culturally appropriate instructional strategies that have demonstrated success among African American and Hispanic/Latino(a) students. This text extends the conversation for culturally affirming pedagogy by showcasing successful models for teaching reading and writing to urban students through a di 606 $aLanguage arts (Elementary)$zUnited States 606 $aCity children$xEducation (Elementary)$zUnited States 606 $aCulturally relevant pedagogy$zUnited States 615 0$aLanguage arts (Elementary) 615 0$aCity children$xEducation (Elementary) 615 0$aCulturally relevant pedagogy 676 $a372.6 702 $aScott$b Lakia M. 702 $aPurdum-Cassidy$b Barbara 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910798516003321 996 $aCulturally affirming literacy practices for urban elementary students$93733873 997 $aUNINA