LEADER 06473nam 2201393 450 001 9910798386803321 005 20230808192935.0 010 $a1-4008-8124-2 024 7 $a10.1515/9781400881246 035 $a(CKB)3710000000657093 035 $a(EBL)4336802 035 $a(SSID)ssj0001646505 035 $a(PQKBManifestationID)16417298 035 $a(PQKBTitleCode)TC0001646505 035 $a(PQKBWorkID)14821288 035 $a(PQKB)11421150 035 $a(MiAaPQ)EBC4336802 035 $a(StDuBDS)EDZ0001756492 035 $a(DE-B1597)474290 035 $a(OCoLC)979882333 035 $a(OCoLC)990414087 035 $a(DE-B1597)9781400881246 035 $a(Au-PeEL)EBL4336802 035 $a(CaPaEBR)ebr11206663 035 $a(CaONFJC)MIL920301 035 $a(OCoLC)949276252 035 $a(EXLCZ)993710000000657093 100 $a20151030d2016 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFourier restriction for hypersurfaces in three dimensions and Newton polyhedra /$fIsroil A. Ikromov and Detlef Mu?ller 210 1$aPrinceton :$cPrinceton University Press,$d[2016] 215 $a1 online resource (269 p.) 225 1 $aAnnals of mathematics studies ;$vnumber 194 300 $aDescription based upon print version of record. 311 $a0-691-17055-X 311 $a0-691-17054-1 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tChapter 1. Introduction -- $tChapter 2. Auxiliary Results -- $tChapter 3. Reduction to Restriction Estimates near the Principal Root Jet -- $tChapter 4. Restriction for Surfaces with Linear Height below 2 -- $tChapter 5. Improved Estimates by Means of Airy-Type Analysis -- $tChapter 6. The Case When hlin(?) ? 2: Preparatory Results -- $tChapter 7. How to Go beyond the Case hlin(?) ? 5 -- $tChapter 8. The Remaining Cases Where m = 2 and B = 3 or B = 4 -- $tChapter 9. Proofs of Propositions 1.7 and 1.17 -- $tBibliography -- $tIndex 330 $aThis is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface.Isroil Ikromov and Detlef Müller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Müller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger.Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields. 410 0$aAnnals of mathematics studies ;$vnumber 194. 606 $aHypersurfaces 606 $aPolyhedra 606 $aSurfaces, Algebraic 606 $aFourier analysis 610 $aAiry cone. 610 $aAiry-type analysis. 610 $aAiry-type decompositions. 610 $aFourier decay. 610 $aFourier integral. 610 $aFourier restriction estimate. 610 $aFourier restriction problem. 610 $aFourier restriction theorem. 610 $aFourier restriction. 610 $aFourier transform. 610 $aGreenleaf's restriction. 610 $aLebesgue spaces. 610 $aLittlewood?aley decomposition. 610 $aLittlewood?aley theory. 610 $aNewton polyhedra. 610 $aNewton polyhedral. 610 $aNewton polyhedron. 610 $aStein?omas-type Fourier restriction. 610 $aauxiliary results. 610 $acomplex interpolation. 610 $adyadic decomposition. 610 $adyadic decompositions. 610 $adyadic domain decompositions. 610 $aendpoint estimates. 610 $aendpoint result. 610 $aimproved estimates. 610 $ainterpolation arguments. 610 $ainterpolation theorem. 610 $ainvariant description. 610 $alinear coordinates. 610 $alinearly adapted coordinates. 610 $anormalized measures. 610 $anormalized rescale measures. 610 $aone-dimensional oscillatory integrals. 610 $aopen cases. 610 $aoperator norms. 610 $aphase functions. 610 $apreparatory results. 610 $aprincipal root jet. 610 $apropositions. 610 $ar-height. 610 $areal interpolation. 610 $areal-analytic hypersurface. 610 $arefined Airy-type analysis. 610 $arestriction estimates. 610 $arestriction. 610 $asmooth hypersurface. 610 $asmooth hypersurfaces. 610 $aspectral localization. 610 $astopping-time algorithm. 610 $asublevel type. 610 $athin sets. 610 $athree dimensions. 610 $atransition domains. 610 $auniform bounds. 610 $avan der Corput-type estimates. 615 0$aHypersurfaces. 615 0$aPolyhedra. 615 0$aSurfaces, Algebraic. 615 0$aFourier analysis. 676 $a516.3/52 686 $aSI 830$2rvk 700 $aIkromov$b Isroil A.$f1961-$01566820 702 $aMu?ller$b Detlef$f1954- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910798386803321 996 $aFourier restriction for hypersurfaces in three dimensions and Newton polyhedra$93837699 997 $aUNINA