LEADER 05739nam 2201345 450 001 9910797511403321 005 20210504020004.0 010 $a1-4008-7402-5 024 7 $a10.1515/9781400874026 035 $a(CKB)3710000000485483 035 $a(EBL)4001611 035 $a(SSID)ssj0001554883 035 $a(PQKBManifestationID)16179870 035 $a(PQKBTitleCode)TC0001554883 035 $a(PQKBWorkID)13759220 035 $a(PQKB)10091768 035 $a(StDuBDS)EDZ0001756490 035 $a(DE-B1597)468952 035 $a(OCoLC)979687281 035 $a(DE-B1597)9781400874026 035 $a(Au-PeEL)EBL4001611 035 $a(CaPaEBR)ebr11124043 035 $a(CaONFJC)MIL832712 035 $a(OCoLC)932328021 035 $a(MiAaPQ)EBC4001611 035 $a(EXLCZ)993710000000485483 100 $a20151223h20162016 uy 0 101 0 $aeng 135 $aurnnu---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aClassification of pseudo-reductive groups /$fBrian Conrad, Gopal Prasad 210 1$aPrinceton, New Jersey ;$aOxford, England :$cPrinceton University Press,$d2016. 210 4$dİ2016 215 $a1 online resource (256 p.) 225 1 $aAnnals of Mathematics Studies ;$vNumber 191 300 $aDescription based upon print version of record. 311 $a0-691-16793-1 311 $a0-691-16792-3 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$t1. Introduction --$t2. Preliminary notions --$t3. Field-theoretic and linear-algebraic invariants --$t4. Central extensions and groups locally of minimal type --$t5. Universal smooth k-tame central extension --$t6. Automorphisms, isomorphisms, and Tits classification --$t7. Constructions with regular degenerate quadratic forms --$t8. Constructions when ? has a double bond --$t9. Generalization of the standard construction --$tA. Pseudo-isogenies --$tB. Clifford constructions --$tC. Pseudo-split and quasi-split forms --$tD. Basic exotic groups of type F4 of relative rank 2 --$tBibliography --$tIndex 330 $aIn the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions. The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic. 410 0$aAnnals of mathematics studies ;$vNumber 191. 606 $aLinear algebraic groups 606 $aGroup theory 606 $aGeometry, Algebraic 610 $a"ient homomorphism. 610 $aCartan k-subgroup. 610 $aDynkin diagram. 610 $aIsogeny Theorem. 610 $aIsomorphism Theorem. 610 $aLevi subgroup. 610 $aSeveri?rauer variety. 610 $aTits classification. 610 $aTits-style classification. 610 $aWeil restriction. 610 $aalgebraic geometry. 610 $aautomorphism functor. 610 $aautomorphism scheme. 610 $aautomorphism. 610 $acanonical central extensions. 610 $acentral "ient. 610 $acentral extension. 610 $acharacteristic 2. 610 $aconformal isometry. 610 $adegenerate quadratic form. 610 $adouble bond. 610 $aexotic construction. 610 $afield-theoretic invariant. 610 $ageneralized exotic group. 610 $ageneralized standard group. 610 $ageneralized standard presentation. 610 $ageneralized standard. 610 $aisomorphism class. 610 $aisomorphism. 610 $aisotropic group. 610 $ak-tame central extension. 610 $alinear isomorphism. 610 $alinear-algebraic invariant. 610 $amaximal torus. 610 $aminimal type. 610 $anon-reduced root system. 610 $anumber theory. 610 $apseudo-isogeny. 610 $apseudo-reductive group. 610 $apseudo-semisimple group. 610 $apseudo-simple group. 610 $apseudo-simple k-group. 610 $apseudo-split form. 610 $apseudo-split. 610 $aquadratic space. 610 $aquadrics. 610 $arank-1. 610 $arank-2. 610 $arigidity property. 610 $aroot field. 610 $aroot system. 610 $ascheme-theoretic center. 610 $asemisimple "ient. 610 $asemisimple k-group. 610 $astructure theorem. 615 0$aLinear algebraic groups. 615 0$aGroup theory. 615 0$aGeometry, Algebraic. 676 $a512/.55 700 $aConrad$b Brian$f1970-$065658 702 $aPrasad$b Gopal 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910797511403321 996 $aClassification of pseudo-reductive groups$93689928 997 $aUNINA