LEADER 02975nam 2200601 450 001 9910797346803321 005 20230803213449.0 010 $a88-921-5428-1 035 $a(CKB)3710000000453109 035 $a(EBL)2097512 035 $a(SSID)ssj0001576867 035 $a(PQKBManifestationID)16247287 035 $a(PQKBTitleCode)TC0001576867 035 $a(PQKBWorkID)14855628 035 $a(PQKB)10655476 035 $a(MiAaPQ)EBC2097512 035 $a(Au-PeEL)EBL2097512 035 $a(CaPaEBR)ebr11079283 035 $a(OCoLC)914433755 035 $a(EXLCZ)993710000000453109 100 $a20150803h20142014 uy 0 101 0 $aita 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aDiritto societario e crisi d'impresa /$fa cura di Umberto Tombari ; scritti di Giuseppe Ferri Jr. [and seven others] 210 1$aTurin, Italy :$cG. Giappichelli Editore,$d2014. 210 4$d©2014 215 $a1 online resource (197 p.) 225 0 $aQuaderni CESIFIN. Nuova serie ;$v62 300 $aIncludes index. 311 $a88-348-4760-1 327 $acover; quartino di testa; Autori ; VERSO UN "DIRITTO SOCIETARIO DELLA CRISI"?; PRINCIPI E PROBLEMI DI "DIRITTO SOCIETARIO DELLACRISI"; I DOVERI DEGLI AMMINISTRATORI DEGLI ORGANIDI CONTROLLO E DELLA SOCIETA? DI REVISIONE NELLAFASE DI EMERSIONE DELLA CRISI; EMERSIONE DELLA CRISI E INTERESSE SOCIALE(SPUNTI DALLA TEORIA DELL'EMERGING INSOLVENCY); LE COMPETENZE DEGLI ORGANI SOCIALI NELLEPROCEDURE DI REGOLAZIONE NEGOZIALE DELLACRISI; SOCI E CREDITORI NELLA STRUTTURA FINANZIARIADELLA SOCIETA? IN CRISI; LA RESPONSABILITA? GESTIONALE NELLA CRISI DELL'IMPRESASOCIETARIA 327 $aCRISI BANCARIE E DIRITTI DEGLI AZIONISTIIndice ; volumi pubblicati 330 $aIl diritto societario ed il diritto della crisi sembrano muoversi su orizzonti paralleli e manifestano da tempo una criticita? di rapporti. Sebbene la crisi d'impresa riguardi normalmente gli enti organizzati in forma di societa?, il diritto riformato delle crisi sostanzialmente ignora questa dimensione; analogamente, il diritto societario non prevede alcuna particolare disciplina delle compagini che si approssimano o comunque versano in uno stato di crisi. Numerosi e complessi sono invece i problemi di ""diritto societario della crisi"" che chiedono una soluzione all'interprete. A titolo esempl 410 0$aQuaderni CESIFIN. Nuova serie; 606 $aOrganizational change$zItaly 606 $aBank management$zItaly 606 $aReengineering (Management)$zItaly 615 0$aOrganizational change 615 0$aBank management 615 0$aReengineering (Management) 676 $a658.406 702 $aTombari$b Umberto 702 $aFerri$b Giuseppe 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910797346803321 996 $aDiritto societario e crisi d'impresa$9821051 997 $aUNINA LEADER 05116nam 22005655 450 001 9910616364403321 005 20251225203526.0 010 $a9783031178016 010 $a3031178017 024 7 $a10.1007/978-3-031-17801-6 035 $a(MiAaPQ)EBC7102398 035 $a(Au-PeEL)EBL7102398 035 $a(CKB)24950543400041 035 $a(PPN)264953495 035 $a(BIP)85863255 035 $a(BIP)85466595 035 $a(DE-He213)978-3-031-17801-6 035 $a(EXLCZ)9924950543400041 100 $a20220929d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBelief Functions: Theory and Applications $e7th International Conference, BELIEF 2022, Paris, France, October 26?28, 2022, Proceedings /$fedited by Sylvie Le Hégarat-Mascle, Isabelle Bloch, Emanuel Aldea 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (318 pages) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v13506 311 08$aPrint version: Le Hégarat-Mascle, Sylvie Belief Functions: Theory and Applications Cham : Springer International Publishing AG,c2022 9783031178009 320 $aIncludes bibliographical references and index. 327 $aEvidential Clustering A Distributional Approach for Soft Clustering Comparison and Evaluation -- Causal transfer evidential clustering -- Jiang A variational Bayesian clustering approach to acoustic emission interpretation including soft labels -- Evidential clustering by Competitive Agglomeration -- Imperfect Labels with Belief Functions for Active Learning -- Machine Learning and Pattern Recognition An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers -- Ordinal Classification using Single-model Evidential Extreme Learning Machine -- Reliability-based imbalanced data classification with Dempster-Shafer theory -- Evidential regression by synthesizing feature selection and parameters learning -- Algorithms and Evidential Operators Distributed EK-NN classification -- On improving a group of evidential sources with different contextual corrections -- Measure of Information Content of Basic Belief Assignments -- Belief functions on On Modelling and Solving the Shortest PathProblem with Evidential Weights -- Data and Information Fusion Heterogeneous Image Fusion for Target Recognition based on Evidence Reasoning -- Cluster Decomposition of the Body of Evidence -- Evidential Trustworthiness Estimation for Cooperative Perception -- An Intelligent System for Managing Uncertain Temporal Flood events -- Statistical Inference - Graphical Models A practical strategy for valid partial prior-dependent possibilistic inference -- On Conditional Belief Functions in the Dempster-Shafer Theory -- Valid inferential models offer performance and probativeness assurances.Links with Other Uncertainty Theories A qualitative counterpart of belief functions with application to uncertainty propagation in safety cases -- The Extension of Dempster?s Combination Rule Based on Generalized Credal Sets -- A Correspondence between Credal Partitions and Fuzzy Orthopartitions -- Toward updating belief functions over Belnap?Dunn logic -- Applications Real bird dataset with imprecise and uncertainvalues -- Addressing ambiguity in randomized reinsurance contracts using belief functions -- Evidential filtering and spatio-temporal gradient for micro-movements analysis in the context of bedsores prevention -- Hybrid Artificial Immune Recognition System with improved belief classification process. 330 $aThis book constitutes the refereed proceedings of the 7th International Conference on Belief Functions, BELIEF 2022, held in Paris, France, in October 2022. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well-understood connections to other frameworks such as probability, possibility, and imprecise probability theories. It has been applied in diverse areas such as machine learning, information fusion, and pattern recognition. The 29 full papers presented in this book were carefully selected and reviewed from 31 submissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more. 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v13506 606 $aProbabilities 606 $aProbability Theory 615 0$aProbabilities. 615 14$aProbability Theory. 676 $a658.403 676 $a519.2 702 $aBloch$b Isabelle 702 $aAldea$b Emanuel 702 $aLe He?garat-Mascle$b Sylvie 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910616364403321 996 $aBelief Functions: Theory and Applications$92154579 997 $aUNINA