LEADER 03061oam 2200601I 450 001 9910797026003321 005 20230725061008.0 010 $a0-429-11312-9 010 $a1-4398-9515-5 024 7 $a10.1201/9781439895153 035 $a(CKB)3710000000391612 035 $a(EBL)1648349 035 $a(SSID)ssj0001458996 035 $a(PQKBManifestationID)12589975 035 $a(PQKBTitleCode)TC0001458996 035 $a(PQKBWorkID)11456554 035 $a(PQKB)10862444 035 $a(MiAaPQ)EBC1648349 035 $a(CaSebORM)9781439895153 035 $a(Au-PeEL)EBL1648349 035 $a(CaPaEBR)ebr11167527 035 $a(OCoLC)908079516 035 $a(OCoLC)958798699 035 $a(EXLCZ)993710000000391612 100 $a20180706d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHow to count $ean introduction to combinatorics /$fby R.B.J.T. Allenby and Alan Slomson 205 $aSecond edition. 210 1$aBoca Raton, FL :$cChapman and Hall/CRC, an imprint of Taylor and Francis,$d2010. 215 $a1 online resource (440 p.) 225 1 $aDiscrete Mathematics and Its Applications 300 $a"A Chapman & Hall Book." 311 $a1-4200-8260-4 320 $aIncludes bibliographical references and index. 327 $aFront cover; Table of Contents; Preface to the Second Edition; Acknowledgments; Authors; Chapter 1. What's It All About?; Chapter 2. Permutations and Combinations; Chapter 3. Occupancy Problems; Chapter 4. The Inclusion-Exclusion Principle; Chapter 5. Stirling and Catalan Numbers; Chapter 6. Partitions and Dot Diagrams; Chapter 7. Generating Functions and Recurrence Relations; Chapter 8. Partitions and Generating Functions; Chapter 9. Introduction to Graphs; Chapter 10. Trees; Chapter 11. Groups of Permutations; Chapter 12. Group Actions; Chapter 13. Counting Patterns 327 $aChapter 14. Po?lya CountingChapter 15. Dirichlet's PigeonholePrinciple; Chapter 16. Ramsey Theory; Chapter 17. Rook Polynomials and Matchings; Solutions to the A Exercises; Books for Further Reading; Index of Notation; Back cover 330 3 $aEmphasizes a Problem Solving ApproachA first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. 410 0$aDiscrete mathematics and its applications. 606 $aCombinatorial analysis 615 0$aCombinatorial analysis. 676 $a511/.6 700 $aAllenby$b R.B.J.T.$054136 702 $aSlomson$b Alan 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910797026003321 996 $aHow to count$93831942 997 $aUNINA