LEADER 02910oam 2200577I 450 001 9910797024003321 005 20230725061016.0 010 $a0-429-10919-9 010 $a1-4398-9522-8 024 7 $a10.1201/9781439895221 035 $a(CKB)3710000000391580 035 $a(EBL)1648135 035 $a(SSID)ssj0001458275 035 $a(PQKBManifestationID)12576937 035 $a(PQKBTitleCode)TC0001458275 035 $a(PQKBWorkID)11451791 035 $a(PQKB)11583498 035 $a(MiAaPQ)EBC1648135 035 $a(Au-PeEL)EBL1648135 035 $a(CaPaEBR)ebr11167487 035 $a(OCoLC)908079159 035 $a(EXLCZ)993710000000391580 100 $a20180706d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCollege geometry $ea unified development /$fby David C. Kay 205 $aFirst edition. 210 1$aBoca Raton, FL :$cCRC Press, an imprint of Taylor and Francis,$d2011. 215 $a1 online resource (641 p.) 225 1 $aTextbooks in Mathematics 300 $aDescription based upon print version of record. 311 $a1-4398-1911-4 320 $aIncludes bibliographical references. 327 $aFront Cover; Contents; Preface; Author; Chapter 1 - Lines, Distance, Segments, and Rays; Chapter 2 - Angles, Angle Measure, and Plane Separation; Chapter 3 - Unified Geometry: Triangles and Congruence; Chapter 4 - Quadrilaterals, Polygons, and Circles; Chapter 5 - Three Geometries; Chapter 6 - Inequalities for Quadrilaterals: Unified Trigonometry; Chapter 7 - Beyond Euclid: Modern Geometry; Chapter 8 - Transformations in Modern Geometry; Chapter 9 - Non-Euclidean Geometry: Analytical Approach; Appendix A: Sketchpad Experiments; Appendix B: Intuitive Spherical Geometry 327 $aAppendix C: Proof in GeometryAppendix D: The Real Numbers and Least Upper Bound; Appendix E: Floating Triangles/Quadrilaterals; Appendix F: Axiom Systems for Geometry; Solutions to Selected Problems; Bibliography; Back Cover 330 3 $aDesigned for mathematics majors and other students who intend to teach mathematics at the secondary school level, College Geometry: A Unified Development unifies the three classical geometries within an axiomatic framework. The author develops the axioms to include Euclidean, elliptic, and hyperbolic geometry, showing how geometry has real and far-reaching implications. He approaches every topic as a fresh, new concept and carefully defines and explains geometric principles. 410 0$aTextbooks in mathematics (Boca Raton, Fla.) 606 $aGeometry$vTextbooks 615 0$aGeometry 676 $a516.0076 700 $aKay$b David C.$0282113 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910797024003321 996 $aCollege geometry$9673102 997 $aUNINA