LEADER 01075nam 2200421 450 001 9910796856803321 005 20230808203032.0 010 $a1-78023-612-3 035 $a(CKB)4100000004820653 035 $a(MiAaPQ)EBC5398124 035 $a(EXLCZ)994100000004820653 100 $a20180604d2016 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMoth /$fMatthew Gandy 210 1$aLondon, UK :$cReaktion Books,$d2016. 215 $a1 online resource (238 pages) $cillustrations 225 1 $aAnimals 311 $a1-78023-585-2 410 0$aAnimal (Reaktion Books) 606 $aMoths 606 $aMoths in art 606 $aMoths$xEcology 615 0$aMoths. 615 0$aMoths in art. 615 0$aMoths$xEcology. 676 $a573.92 700 $aGandy$b Matthew$0329679 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910796856803321 996 $aMoth$93699590 997 $aUNINA LEADER 02186nam 22004453u 450 001 9910778125203321 005 20230721031627.0 010 $a1-383-03008-1 010 $a1-281-16042-3 010 $a0-19-152480-8 010 $a1-4294-9266-X 035 $a(CKB)1000000000476624 035 $a(EBL)415527 035 $a(OCoLC)476243100 035 $a(MiAaPQ)EBC415527 035 $a(EXLCZ)991000000000476624 100 $a20130418d2007|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 200 10$aMathematical Logic$b[electronic resource] 210 $aOxford $cOxford University Press, UK$d2007 215 $a1 online resource (259 p.) 225 1 $aOxford Texts in Logic ;$vv.No. 3 300 $aDescription based upon print version of record. 311 $a0-19-857100-3 327 $aContents; 1 Prelude; 2 Informal natural deduction; 3 Propositional logic; 4 First interlude: Wason's selection task; 5 Quantifier-free logic; 6 Second interlude: the Linda problem; 7 First-order logic; 8 Postlude; Appendix A: The natural deduction rules; Appendix B: Denotational semantics; Appendix C: Solutions to some exercises; Index 330 $aAssuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. - ;Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is s 410 0$aOxford Texts in Logic 606 $aLogic, Symbolic and mathematical 615 4$aLogic, Symbolic and mathematical. 676 $a511.3 700 $aChiswell$b Ian$0319946 701 $aHodges$b Wilfrid$058897 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910778125203321 996 $aMathematical Logic$93770629 997 $aUNINA