LEADER 01776nam 2200517 450 001 9910796840703321 005 20211029210414.0 010 $a1-4704-4415-1 035 $a(CKB)4100000004823581 035 $a(MiAaPQ)EBC5409187 035 $a(RPAM)20480569 035 $a(PPN)228545927 035 $a(EXLCZ)994100000004823581 100 $a20180625d2018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNeckpinch dynamics for asymmetric surfaces evolving by mean curvature flow /$fGang Zhou, Dan Knopf, Israel Michael Sigal 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2018] 210 4$dİ2018 215 $a1 online resource (90 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vVolume 253, Number 1210 311 $a1-4704-2840-7 320 $aIncludes bibliographical references. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 253, Number 1210. 606 $aEvolution equations$xAsymptotic theory 606 $aAsymptotic expansions 606 $aCurvature 606 $aSingularities (Mathematics) 615 0$aEvolution equations$xAsymptotic theory. 615 0$aAsymptotic expansions. 615 0$aCurvature. 615 0$aSingularities (Mathematics) 676 $a516.3/62 700 $aGang$b Zhou$c(Mathematics professor),$01552969 702 $aKnopf$b Dan$f1959- 702 $aSigal$b Israel Michael$f1945- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910796840703321 996 $aNeckpinch dynamics for asymmetric surfaces evolving by mean curvature flow$93813147 997 $aUNINA