LEADER 05784nam 2200733 450 001 9910132235103321 005 20230707215520.0 010 $a1-118-92540-8 010 $a1-118-92538-6 010 $a1-118-92539-4 035 $a(CKB)3710000000093437 035 $a(EBL)1650853 035 $a(SSID)ssj0001212825 035 $a(PQKBManifestationID)11832227 035 $a(PQKBTitleCode)TC0001212825 035 $a(PQKBWorkID)11226361 035 $a(PQKB)10030569 035 $a(MiAaPQ)EBC1650853 035 $a(Au-PeEL)EBL1650853 035 $a(CaPaEBR)ebr10849225 035 $a(CaONFJC)MIL584589 035 $a(OCoLC)874321901 035 $a(PPN)188582908 035 $a(EXLCZ)993710000000093437 100 $a20140326h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNanoscale microwave engineering $eoptical control of nanodevices /$fCharlotte Tripon-Canseliet, Jean Chazelas 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2014. 210 4$d©2014 215 $a1 online resource (136 p.) 225 1 $aFOCUS : Nanoscience and Nanotechnology Series,$x2051-249X 225 1 $aFOCUS Series 300 $aDescription based upon print version of record. 311 $a1-84821-587-8 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Introduction; Chapter 1. Nanotechnology-based Materials and Their Interaction with Light; 1.1. Review of main trends in 3D to 0D materials; 1.1.1. Main trends in 3D materials for radio frequency (RF) electronicsand photonics; 1.1.2. Main trends in 2D materials for RF electronics and photonics; 1.1.3. Review of other two-dimensional structures for RF electronic applications; 1.1.4. Main trends in 1D materials for RF electronics and photonics; 1.1.5. Other 1D materials for RF applications; 1.1.6. Some attempts on 0D materials; 1.2. Light/matter interactions 327 $a1.2.1. Fundamental electromagnetic properties of 3D bulk materials1.2.2. Linear optical transitions; 1.3. Focus on two light/matter interactions at the material level; 1.3.1. Photoconductivity in semiconductor material; 1.3.2. Example of light absorption in metals: plasmonics; Chapter 2. Electromagnetic Material Characterization at Nanoscale; 2.1. State of the art of macroscopic material characterization techniques in the microwave domain with dedicated equipment; 2.1.1. Static resistivity; 2.1.2. Carrier and doping density; 2.1.3. Contact resistance and Schottky barriers 327 $a2.1.4. Transient methods for the determination of carrier dynamics2.1.5. Frequency methods for complex permittivity determination infrequency; 2.2. Evolution of techniques for nanomaterial characterization; 2.2.1. The CNT transistor; 2.2.2. Optimizing DC measurements; 2.2.3. Pulsed I-V measurements; 2.2.4. Capacitance-voltage measurements; 2.3. Micro- to nano experimental techniques for the characterization of 2D, 1D and 0D materials; Chapter 3. Nanotechnology-based Components and Devices; 3.1. Photoconductive switches for microwave applications; 3.1.1. Major stakes; 3.1.2. Basic principles 327 $a3.1.3. State of the art of photoconductive switching3.1.4. Photoconductive switching at nanoscale - examples; 3.2. 2D materials for microwave applications; 3.2.1. Graphene for RF applications; 3.2.2. Optoelectronic functions; 3.2.3. Other potential applications of graphene; 3.3. 1D materials for RF electronics and photonics; 3.3.1. Carbon nanotubes in microwave and RF circuits; 3.3.2. CNT microwave transistors; 3.3.3. RF absorbing and shielding materials based on CNT composites; 3.3.4. Interconnects; Chapter 4. Nanotechnology-based Subsystems; 4.1. Sampling and analog-to-digital converter 327 $a4.1.1. Basic principles of sampling and subsampling4.1.2. Optical sampling of microwave signals; 4.2. Photomixing principle; 4.3. Nanoantennas for microwave to THz applications; 4.3.1. Optical control of antennas in the microwave domain; 4.3.2. THz photoconducting antennas; 4.3.3. 2D material-based THz antennas; 4.3.4. 1D material-based antennas; 4.3.5. Challenges for future applications; Conclusions and Perspectives; C.1. Conclusions; C.2. Perspectives: beyond graphene structures for advanced microwave functions; C.2.1. van der Waals heterostructures 327 $aC.2.2. Beyond graphene: heterogeneous integration of graphene with other 2D semiconductor materials 330 $aThis book targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge on atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures. It thus provides n 410 0$aFocus nanoscience and nanotechnology series 410 0$aFocus series (London, England) 606 $aMicrowave devices 606 $aMicrowaves$xIndustrial applications 606 $aNanostructured materials 615 0$aMicrowave devices. 615 0$aMicrowaves$xIndustrial applications. 615 0$aNanostructured materials. 676 $a621.3813 700 $aTripon-Canseliet$b Charlotte$0966961 702 $aChazelas$b Jean 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132235103321 996 $aNanoscale microwave engineering$92195127 997 $aUNINA LEADER 03422nam 2200553 450 001 9910796608503321 005 20200520144314.0 010 $a3-11-048421-8 024 7 $a10.1515/9783110484847 035 $a(CKB)4100000001502347 035 $a(MiAaPQ)EBC5157310 035 $a(DE-B1597)467460 035 $a(OCoLC)1020025773 035 $a(DE-B1597)9783110484847 035 $a(Au-PeEL)EBL5157310 035 $a(CaPaEBR)ebr11497576 035 $a(EXLCZ)994100000001502347 100 $a20180207h20172017 uy 0 101 0 $ager 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aSinn - Geist - Symbol $eEine systematisch-genetische Rekonstruktion der fru?hen Symboltheorie Paul Tillichs /$fLars Christian Heinemann 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2017. 210 4$d©2017 215 $a1 online resource (642 pages) 225 1 $aTillich Research,$x2192-1938 ;$vVolume 10 311 $a3-11-048141-3 311 $a3-11-048484-6 320 $aIncludes bibliographical references and indexes. 327 $tFrontmatter -- $tVorwort -- $tInhalt -- $tEinleitung -- $tI. Der Weg zum System -- $tII. Kategoriale Grundlagen der Symboltheorie -- $tIII. Die Symboltheorie -- $tAbschließende Reflexionsgänge -- $tAnhang -- $tQuellen- und Literaturverzeichnis -- $tPersonenregister -- $tSchriftenregister -- $tSachregister 330 $a"Das Symbol ist die Sprache der Religion." - Dieser Gedanke markiert das Zentrum der Religionstheorie Paul Tillichs. Die frühe Konzeption des religiösen Symbols fokussiert dabei den Ertrag paradoxtheologischer, sinntheoretischer und geistphilosophischer Reflexion. Vor deren Hintergrund kann Tillich Symbole als allein adäquate Ausdrucksgestalt einer das religiöse Bewusstsein definierenden, in sich unendlichen Transzendierungsbewegung begreiflich machen. Seine Symboltheorie repräsentiert im interdisziplinären Diskurs 'Metapher - Symbol - Zeichen - Begriff' eine genuin theologische und religionsphilosophische Position von bleibender Bedeutung. Im Ausgang von Tillichs Frühschriften vor dem Ersten Weltkrieg rekonstruiert Lars Heinemann zunächst den Paradoxgedanken als Vorläuferfigur des späteren Symbolbegriffs. Vor dem Hintergrund der beiden kategorialen Rahmentheorien der 1920er Jahre - des Sinns und des Geistes - wird schließlich der Symbolgedanke selbst nach seinen wesentlichen Theoriedimensionen hin entfaltet. Die Arbeit leistet auf Grundlage der erheblich verbesserten Quellenlage des frühen und mittleren Werkes einen wichtigen Beitrag zur Erschließung von Tillichs Sinn-, Geist- und Symbolverständnis. Sie zeigt dabei, u.a. mit Blick auf die Rezeption Ernst Cassirers und semiotischer Entwürfe, die Bedeutung seines Symbolbegriffs für gegenwärtige Fragestellungen der Systematischen und Praktischen Theologie. 410 0$aTillich research ;$vVolume 10. 606 $aReligion$xPhilosophy 610 $aPaul Tillich. 610 $aTheology. 610 $aphilososphy of religion. 610 $asymbol theory. 615 0$aReligion$xPhilosophy. 676 $a230.092 700 $aHeinemann$b Lars Christian$01487204 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910796608503321 996 $aSinn - Geist - Symbol$93706975 997 $aUNINA