LEADER 01427nam a22002891i 4500 001 991002339699707536 005 20040304191456.0 008 040407s1990 it |||||||||||||||||ita 035 $ab12907789-39ule_inst 035 $aARCHE-088740$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a338.4750 100 1 $aHamende, Benoit$076212 245 13$aIl Centro internazionale di fisica teorica di Miramare e il suo impatto socio-economico sulla citta di Trieste /$cBenoit Hamende, Giorgio Valussi ; introduzione di Abdus Salam e Giorgio Valussi 260 $aTrieste :$b[s.n.],$c1990 300 $a80 p. ;$c24 cm 440 0$aQuaderni dell'Istituto di geografia della facoltà di economia e commercio dell'Università di Trieste 650 4$aCentro internazionale di fisica teorica 650 4$aRicerca scientifica$xAspetti economici$xTrieste 700 1 $aValussi, Giorgio$eauthor$4http://id.loc.gov/vocabulary/relators/aut$032856 700 1 $aSalam, Abdus 907 $a.b12907789$b02-04-14$c16-04-04 912 $a991002339699707536 945 $aLE009 GEOG.14.414-7$g1$i2009000327849$lle009$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13475459$z16-04-04 996 $aCentro internazionale di fisica teorica di Miramare e il suo impatto socio-economico sulla citta di Trieste$91448896 997 $aUNISALENTO 998 $ale009$b16-04-04$cm$da $e-$fita$git $h3$i1 LEADER 01133nam0-22003131i-450 001 990004377120403321 005 20240111114455.0 010 $a88-87027-77-3 100 $a20021218d2001----km-y0itay50------ba 101 0 $alat$aita 102 $aIT 105 $ay-------001yy 200 1 $aDe centesimo seu iubileo anno$ela storia del primo giubileo (1300)$fIacopo Stefaneschi$ga cura di Claudio Leonardi$gtesto critico di Paul Gerhard Schmidt$gtraduzione e note di Antonio Placanica 210 $aTavernuzze$cSISMEL, Edizioni del Galluzzo$d2001 215 $aXIX, 111 p.$d25 cm 225 1 $aEdizione nazionale dei testi mediolatini$v1 225 1 $aEdizione nazionale dei testi mediolatini. Serie 2$v1 676 $a263.97$v20$zit 700 1$aStefaneschi,$bIacopo$0175501 702 1$aLeonardi,$bClaudio$f<1926-2010> 702 1$aPlacanica,$bAntonio 702 1$aSchmidt,$bPaul Gerhard 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004377120403321 952 $aP2B 660 SISMEL TESTI 01$bBibl. 44419$fFLFBC 959 $aFLFBC 996 $aDe centesimo seu iubileo anno$9541990 997 $aUNINA LEADER 02696nam 2200589 450 001 9910796038003321 005 20170822144315.0 010 $a0-8218-9466-8 035 $a(CKB)3780000000000139 035 $a(EBL)3114438 035 $a(SSID)ssj0000889024 035 $a(PQKBManifestationID)11478244 035 $a(PQKBTitleCode)TC0000889024 035 $a(PQKBWorkID)10875132 035 $a(PQKB)10852678 035 $a(MiAaPQ)EBC3114438 035 $a(RPAM)17520687 035 $a(PPN)195408241 035 $a(EXLCZ)993780000000000139 100 $a20150416h20122012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Kohn-Sham equation for deformed crystals /$fWeinan E, Jianfeng Lu 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2012. 210 4$d©2012 215 $a1 online resource (97 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 221, Number 1040 300 $a"January 2013, Volume 221, Number 1040 (fourth of 5 numbers)." 311 $a0-8218-7560-4 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Perfect crystal""; ""Chapter 3. Stability condition""; ""Chapter 4. Homogeneously deformed crystal""; ""Chapter 5. Deformed crystal and the extended Cauchy-Born rule""; ""Chapter 6. The linearized Kohn-Sham operator""; ""1. From density to potential: Uniform estimates of the operator""; ""Chapter 7. Proof of the results for the homogeneously deformed crystal""; ""Chapter 8. Exponential decay of the resolvent""; ""Chapter 9. Asymptotic analysis of the Kohn-Sham equation"" 327 $a""Chapter 10. Higher order approximate solution to the Kohn-Sham equation""""Chapter 11. Proofs of Lemmas 5.3 and 5.4""; ""Appendix A. Proofs of Lemmas 9.3 and 9.9""; ""Acknowledgement""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 221, Number 1040. 606 $aDislocations in crystals$xMathematical models 606 $aDeformations (Mechanics)$xMathematical models 606 $aDensity functionals 615 0$aDislocations in crystals$xMathematical models. 615 0$aDeformations (Mechanics)$xMathematical models. 615 0$aDensity functionals. 676 $a548.8420153154 700 $aE$b Weinan$f1963-$01519521 702 $aLu$b Jianfeng$f1983- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910796038003321 996 $aThe Kohn-Sham equation for deformed crystals$93757698 997 $aUNINA