LEADER 03376nam 2200613 450 001 9910796034903321 005 20170822144215.0 010 $a1-4704-1485-6 035 $a(CKB)3780000000000266 035 $a(EBL)3114209 035 $a(SSID)ssj0001351945 035 $a(PQKBManifestationID)11831850 035 $a(PQKBTitleCode)TC0001351945 035 $a(PQKBWorkID)11309252 035 $a(PQKB)10938431 035 $a(MiAaPQ)EBC3114209 035 $a(RPAM)17922576 035 $a(PPN)195408586 035 $a(EXLCZ)993780000000000266 100 $a20150417h20132013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNonlinear stability of Ekman boundary layers in rotation stratified fluids /$fHajime Koba 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2013. 210 4$dİ2013 215 $a1 online resource (142 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 228, Number 1073 300 $a'Volume 228, Number 1073 (fifth of 5 numbers)." 311 $a0-8218-9133-2 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Acknowledgments""; ""Chapter 1. Introduction""; ""Chapter 2. Formulation and Main Results""; ""2.1. Function Spaces and Notation""; ""2.2. Formulation and Main Results""; ""Chapter 3. Linearized Problem""; ""3.1. Trace Operators and Characterizations of Function Spaces""; ""3.2. Stokes-Laplace Operators with Dirichlet Boundary Conditions _{ }""; ""3.3.""; ""3.4. Ekman Operators _{ , }""; ""3.5. Linear Stability""; ""Chapter 4. Existence of Global Weak Solutions""; ""4.1. Construction of Approximate Solutions""; ""4.2. A-priori Bounds for Approximate Solutions"" 327 $a""4.3. Convergence Properties""""4.4. Weak Continuity and an Energy Inequality""; ""4.5. Existence of a Weak Solution""; ""Chapter 5. Uniqueness of Weak Solutions""; ""5.1. Strong Energy Inequality""; ""5.2. Strong Energy Equality""; ""5.3. Uniqueness of Weak Solutions""; ""Chapter 6. Nonlinear Stability""; ""6.1. Weak Nonlinear Stability""; ""6.2. Decay Property""; ""Chapter 7. Smoothness of Weak Solutions""; ""7.1. Construction of a Unique Strong Solution""; ""7.2. Smoothness of Weak Solutions""; ""Chapter 8. Some Extensions of the Theory""; ""8.1. Navier-Stokes System with Coriolis Force"" 327 $a""Appendix A. Toolbox""""A.1. Heinz-Katoa???s Theorem and Maximal ^{ }-Regularity""; ""A.2. Compactness Criteria and Properties of a Mollifier""; ""A.3. Proofs of Useful Lemmas""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 228, Number 1073. 606 $aNavier-Stokes equations 606 $aFluid mechanics 606 $aStratified flow$xMathematical models 606 $aNonlinear boundary value problems 615 0$aNavier-Stokes equations. 615 0$aFluid mechanics. 615 0$aStratified flow$xMathematical models. 615 0$aNonlinear boundary value problems. 676 $a532/.051 700 $aKoba$b Hajime$f1984-$01519507 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910796034903321 996 $aNonlinear stability of Ekman boundary layers in rotation stratified fluids$93757669 997 $aUNINA