LEADER 01902nam 2200565 450 001 9910795943403321 005 20200520144314.0 010 0 $a1118721446 010 0 $a9781118721445 035 $a(MiAaPQ)EBC7103985 035 $a(CKB)24989717500041 035 $a(MiAaPQ)EBC1895560 035 $a(Au-PeEL)EBL1895560 035 $a(CaPaEBR)ebr11004526 035 $a(CaONFJC)MIL690602 035 $a(OCoLC)881387350 035 $a(JP-MeL)3000110859 035 $a(Au-PeEL)EBL7103985 035 $a(OCoLC)1347024895 035 $a(EXLCZ)9924989717500041 100 $a20150124h20152015 uy f 101 0 $aeng 135 $aur||||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aSymmetry analysis of differential equations $ean introduction /$fDaniel J. Arrigo, Department of Mathematics, University of Central Arkansas, Conway, AR 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons,$d2015. 210 4$d2015 215 $a1 online resource (193 pages) 300 $aIncludes bibliographical references (p. 171-174) and index 320 $aIncludes bibliographical references and index. 606 $aDifferential equations, Partial$vTextbooks 606 $aLie groups$vTextbooks 606 $aLie groups$xStudy and teaching (Graduate) 606 $aLie groups$xStudy and teaching (Higher) 615 0$aDifferential equations, Partial 615 0$aLie groups 615 0$aLie groups$xStudy and teaching (Graduate) 615 0$aLie groups$xStudy and teaching (Higher) 676 $a515/.353 686 $a413.6$2njb/09 686 $a515/.353$2njb/09 700 $aArrigo$b Daniel J$g(Daniel Joseph),$f1960-$01520940 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910795943403321 996 $aSymmetry analysis of differential equations$93759775 997 $aUNINA