LEADER 03255nam 2200601 450 001 9910794335703321 005 20201204074241.0 010 $a1-4704-6249-4 035 $a(CKB)4100000011437131 035 $a(MiAaPQ)EBC6346626 035 $a(RPAM)21684820 035 $a(PPN)250799871 035 $a(EXLCZ)994100000011437131 100 $a20201204d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Riesz transform of codimension smaller than one and the Wolff energy /$fBenjamin Jaye [and three others] 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2020] 210 4$d©2020 215 $a1 online resource (110 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vNumber 1293 300 $a"Forthcoming, volume 266, number 1293." 311 $a1-4704-4213-2 320 $aIncludes bibliographical references. 327 $aThe general scheme : finding a large Lipschitz oscillation coefficient -- Upward and downward domination -- Preliminary results regarding reflectionless measures -- The basic energy estimates -- Blow up I : The density drop -- The choice of the shell -- Blow up II : doing away with [epsilon] -- Localization around the shell -- The scheme -- Suppressed kernels -- Step I : Caldero?n-Zygmund theory (from a distribution to an Lp-function) -- Step II : The smoothing operation -- Step III : The variational argument -- Contradiction. 330 $a"Fix d [greater than or equal to] 2, and s [epsilon] (d - 1, d). We characterize the non-negative locally finite non-atomic Borel measures [mu] in Rd for which the associated s-Riesz transform is bounded in L²([mu]) in terms of the Wolff energy. This extends the range of s in which the Mateu-Prat-Verdera characterization of measures with bounded s-Riesz transform is known. As an application, we give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator (-[delta])[infinity]/2, [infinity] [epsilon] (1, 2), in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society ;$vNumber 1293. 606 $aHarmonic analysis 606 $aCaldero?n-Zygmund operator 606 $aLaplacian operator 606 $aLipschitz spaces 606 $aPotential theory (Mathematics) 615 0$aHarmonic analysis. 615 0$aCaldero?n-Zygmund operator. 615 0$aLaplacian operator. 615 0$aLipschitz spaces. 615 0$aPotential theory (Mathematics) 676 $a515.73 686 $a42B37$a31B15$2msc 700 $aJaye$b Benjamin$f1984-$01539881 702 $aNazorov$b Fedor$g(Fedya L'vovich), 702 $aReguera$b Maria Carmen$f1981- 702 $aTolsa$b Xavier 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910794335703321 996 $aThe Riesz transform of codimension smaller than one and the Wolff energy$93791058 997 $aUNINA