LEADER 02388nam 2200481 450 001 9910794074103321 005 20200410094542.0 010 $a1-4704-5507-2 035 $a(CKB)4100000010348409 035 $a(MiAaPQ)EBC6118466 035 $a(RPAM)21568691 035 $a(PPN)245282823 035 $a(EXLCZ)994100000010348409 100 $a20200410d2019 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAutomorphisms of fusion systems of finite simple groups of lie type /$fCarles Broto, Jesper M. Møller, Bob Oliver 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2019] 210 4$d©2019 215 $a1 online resource (vi, 163 pages) $cillustrations 225 1 $aMemoirs of the American Mathematical Society ;$vVolume 1267 300 $a"Automorphisms of fusion systems of sporadic simple groups"--Title page. 311 $a1-4704-3772-4 320 $aIncludes bibliographical references. 330 $a"For a finite group G of Lie type and a prime p, we compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex, but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG[caret]p in terms of Out(G)."--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 1267. 606 $aFinite simple groups 615 0$aFinite simple groups. 676 $a512.2 686 $a20D06$a20D20$a20D45$a20E42$a55R35$2msc 700 $aBroto$b Carles$011785 702 $aMøller$b Jesper 702 $aOliver$b Robert$f1949- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910794074103321 996 $aAutomorphisms of fusion systems of finite simple groups of lie type$93797722 997 $aUNINA