LEADER 00933nam a2200265 i 4500 001 991000923359707536 005 20020507175933.0 008 970428s1973 it ||| | ita 035 $ab10776394-39ule_inst 035 $aLE01304381$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.5 084 $aAMS 33B 100 1 $aGatteschi, Luigi$013588 245 10$aFunzioni speciali /$cLuigi Gatteschi 260 $a[Torino] :$bUTET (Unione Tipografico Editrice Torinese),$cc1973 300 $axiv, 417 p. ;$c25 cm. 490 0 $aCollezione di matematica applicata 650 4$aElementary classical functions 907 $a.b10776394$b23-02-17$c28-06-02 912 $a991000923359707536 945 $aLE013 33B GAT11 (1973)$g1$i2013000080901$lle013$o-$pE0.00$q-$rl$s- $t0$u4$v0$w4$x0$y.i10875384$z28-06-02 996 $aFunzioni speciali$979541 997 $aUNISALENTO 998 $ale013$b01-01-97$cm$da $e-$fita$git $h0$i1 LEADER 03086nam 2200505 450 001 9910794024003321 005 20200810211351.0 010 $a1-4704-5810-1 035 $a(CKB)4100000011244158 035 $a(MiAaPQ)EBC6195971 035 $a(RPAM)21544228 035 $a(PPN)250663562 035 $a(EXLCZ)994100000011244158 100 $a20200810d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHigher orbifolds and deligne-mumford stacks as structured infinity-topoi /$fDavid Joseph Carchedi 210 1$aProvidence, RI :$cAmerican Mathematical Society,$d2020. 215 $a1 online resource (132 pages) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 264, Number 1282 311 $a1-4704-4144-6 320 $aIncludes bibliographical references. 330 $a"We develop a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. We choose to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie (2004), but our approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra as in Lurie (2004), but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings. This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, a result sketched in Carchedi (2019), which extends to derived and spectral Deligne-Mumford stacks as well"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 264, Number 1282. 606 $aAlgebraic geometry -- Families, fibrations -- Stacks and moduli problems$2msc 606 $aToposes 606 $aOrbifolds 606 $aCategories (Mathematics) 615 7$aAlgebraic geometry -- Families, fibrations -- Stacks and moduli problems. 615 0$aToposes. 615 0$aOrbifolds. 615 0$aCategories (Mathematics) 676 $a516/.07 686 $a18B25$a14D23$a58A03$2msc 700 $aCarchedi$b David Joseph$01526969 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910794024003321 996 $aHigher orbifolds and deligne-mumford stacks as structured infinity-topoi$93769429 997 $aUNINA