LEADER 11416nam 2200565 450 001 9910793302103321 005 20230125190940.0 010 $a1-63081-489-X 010 $a9781630814098 035 $a(CKB)4100000007596341 035 $a(CaBNVSL)mat09100054 035 $a(IEEE)9100054 035 $a(MiAaPQ)EBC6881771 035 $a(Au-PeEL)EBL6881771 035 $a(OCoLC)1298391072 035 $a(EXLCZ)994100000007596341 100 $a20200729d2018 uy 101 0 $aeng 135 $aur|n||||||||| 181 $2rdacontent 182 $2isbdmedia 183 $2rdacarrier 200 10$aSystems engineering of phased arrays /$fRick Sturdivant, Clifton Quan, Enson Chang 205 $a1st ed. 210 1$aBoston :$cArtech House,$d[2019] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2018] 215 $a1 PDF (xxi, 291 pages) $cillustrations 225 1 $aArtech House radar series 311 $a1-63081-488-1 320 $aIncludes bibliographical references and index. 327 $aIntro -- Systems Engineering of Phased Arrays -- Contents -- Preface -- Acknowledgments -- Part I System Engineering Activities -- 1 The Systems Engineering Process and Its Application to Phased Arrays -- 1.1 Introduction -- 1.2 Methodological Reductionism -- 1.3 The Systems Engineering Approach -- 1.4 The Three-Phase Process -- 1.5 Phase 1: Concept Development -- 1.5.1 Needs Analysis -- 1.5.2 Alternatives Exploration -- 1.5.3 Trade Studies and Baseline Selection -- 1.5.4 New Technology Validation -- 1.5.5 Risk Management Plan -- 1.5.6 Other Concept Development Activities -- 1.6 Phase II: Engineering Development -- 1.6.1 Typical Engineering Activities for Phased Arrays -- 1.6.2 Antenna Development -- 1.6.3 Integrated Circuit Development -- 1.6.4 T/R Module Development -- 1.6.5 Thermal Design and Heat Transfer Development -- 1.6.6 Beamformer Development -- 1.6.7 Digital Receiver/Exciter Development -- 1.6.8 Mechanical Structure Development -- 1.6.9 Production Plan Development -- 1.6.10 Acceptance Testing -- 1.6.11 Other Functions -- 1.6.12 Outputs from Engineering Development -- 1.7 Phase III: Post-Development -- 1.7.1 Production -- 1.7.2 Deployment -- 1.7.3 Operation and System Maintenance -- 1.7.4 Eventual Decommissioning -- 1.8 Conclusions -- 1.9 Problems -- References -- 2 Phased Array System Architectures -- 2.1 Introduction to Phased Array System Architectures -- 2.2 Phased Array System Basics -- 2.3 Phased Array Architectures -- 2.3.1 Passive Phased Arrays -- 2.3.2 AESA -- 2.3.3 AESA with Phase Shifters at Each Element and at Each Subarray -- 2.3.4 Element-Level Digital Beamforming -- 2.3.5 Other Methods -- 2.4 Array Architectures for T/R Module Integration -- 2.5 Array Beamforming Options -- 2.6 Polarization Diverse and Wideband Arrays -- 2.7 Conclusions -- 2.8 Problems -- References -- 3 Use Cases for Phased Arrays. 327 $a3.1 Introduction to Use Cases -- 3.2 High-Altitude Platform Station -- 3.2.1 Introduction to HAPS -- 3.2.2 HAPS System Description with Key Challenges and Benefits -- 3.2.3 HAPS Examples and Summary -- 3.3 Medical Applications of Phased Arrays -- 3.3.1 Introduction to Medical Phased Arrays -- 3.3.2 Medical Arrays System Description with Key Challenges and Benefits -- 3.3.3 Medical Phased Array Examples and Summary -- 3.4 Phased Array for 5G MIMO Broadband -- 3.4.1 Introduction 5G Broadband Phased Arrays -- 3.4.2 5G Phased Array System Description with Key Challenges and Benefits -- 3.4.3 5G Phased Array Examples and Summary -- 3.5 Airborne Radar for Fighter Aircraft -- 3.5.1 Introduction to Military Phased Arrays -- 3.5.2 Airborne Phased Array System Description with Key Challenges and Benefits -- 3.5.3 Airborne Phased Array Examples and Summary -- 3.6 Conclusions -- 3.7 Problems -- References -- 4 Phased Array Concept Development Example -- 4.1 Introduction -- 4.2 Needs Assessment-A Common Starting Point -- 4.3 Technology Opportunities -- 4.4 System Architecting -- 4.5 The SAI Method for New System Concept Development -- 4.6 Application of the Modified SAI Method to Broadband Access for Small to Medium-Size Public Venues -- 4.6.1 Step 1: Determine Value Proposition and Constraints -- 4.6.2 Step 2: Identification of Potential Perturbations -- 4.6.3 Step 3: Identify Desired Ilities -- 4.6.4 Step 4: Generate Function Alternatives -- 4.6.5 Step 5: Generate Architecture Options -- 4.6.6 Step 6: Select the "Best" Architecture Option -- 4.7 Conclusions -- 4.8 Problems -- References -- Part II Detailed Development Activities -- 5 Antenna Element Technology Options -- 5.1 Introduction -- 5.2 Based Concepts of Antennas -- 5.3 Antenna Development Process -- 5.4 Conventional Dipole -- 5.5 Planar Inverted-F Antenna -- 5.6 Meander Line Antenna. 327 $a5.7 Microstrip Patch Antennas -- 5.8 Bowtie Dipole Antenna -- 5.9 Waveguide Radiators -- 5.10 Reflector Antenna -- 5.11 Vivaldi Tapered Slotline Antenna -- 5.12 Low-Profile Vivaldi Tapered Slot Antennas -- 5.13 Tightly Coupled Dipole Array -- 5.14 Conclusions -- 5.15 Problems -- References -- 6 Transmit/Receive Modules -- 6.1 Introduction -- 6.2 Technical Challenges Often Faced in T/R Module Development -- 6.2.1 Heat Transfer -- 6.2.2 Signal Integrity -- 6.2.3 Integration with Other Functions -- 6.2.4 Materials Compatibility -- 6.2.5 Electromagnetic Coupling -- 6.3 General Description of the T/R Module -- 6.3.1 System Location of the T/R Module -- 6.3.2 T/R Block Diagram -- 6.4 T/R Module Detailed Description -- 6.4.1 Low Noise Amplifier -- 6.4.2 Low Noise Amplifier Protection -- 6.4.3 High-Power Amplifier and Driver Amplifier -- 6.4.4 Phase Shifter -- 6.4.5 Duplexer -- 6.5 T/R Module Manufacturing and Test -- 6.5.1 Integrated Circuit Manufacturing -- 6.5.2 Package Manufacturing -- 6.5.3 Interconnects Types -- 6.5.4 T/R Module Test -- 6.6 Examples of T/R Modules -- 6.6.1 A 3-D Ceramic T/R Module for Space-Based Applications -- 6.6.2 T/R Module Using Laminate Circuit Board Technology -- 6.6.3 60-GHz CMOS T/R Module Integrated with Antennas -- 6.7 Conclusions -- 6.8 Problems -- References -- 7 Thermal Design, Heat Transfer Trade Studies, and Reliability -- 7.1 Introduction -- 7.2 Heat Transfer Fundamentals at the Integrated Circuit Level -- 7.3 Reliability and MTTF -- 7.4 Example: Millimeter-Wave SATCOM Front End -- 7.5 Array Cooling Methods -- 7.5.1 The Challenge of Phased Array Cooling -- 7.5.2 Brick Array Cooling -- 7.5.3 Tile Array Cooling -- 7.6 Other Reliability Drivers for Phased Arrays -- 7.7 Materials Used for Thermal Management -- 7.8 Conclusions -- 7.9 Problems -- References -- 8 Analog versus Digital Beamforming -- 8.1 Introduction. 327 $a8.2 Benefits and Challenges in Analog Beamforming -- 8.3 Benefits and Challenges in Digital Beamforming -- 8.4 Basic Digital Beamforming -- 8.5 Adaptive Beamforming -- 8.6 Errors in Beamforming and Their Effects -- 8.7 Multiple Access Methods for 5G Phased Arrays -- 8.7.1 Orthogonal Frequency Division Multiple Access -- 8.7.2 Code Division Multiple Access -- 8.7.3 Other Access Technologies -- 8.8 Conclusions -- 8.9 Problems -- References -- 9 Digital Receiver Exciters -- 9.1 Introduction -- 9.2 Digital Receiver Architecture Options -- 9.3 Example Trade Study on Digital Receiver Architecture -- 9.4 Digital Exciter Architecture Options -- 9.5 Main Components of a Digital Receiver Exciter -- 9.5.1 Low Noise Amplifier -- 9.5.2 Digital Attenuator -- 9.5.3 Frequency Mixer -- 9.5.4 Preselection, Image Rejection, and Antialiasing Filters -- 9.5.5 Frequency Multipliers -- 9.5.6 ADC -- 9.6 Analysis of DRXs -- 9.7 Conclusions -- 9.8 Problems -- References -- Part III System Modeling and Advanced Development Activities -- 10 Phased Array System Modeling -- 10.1 Introduction -- 10.2 LFOV Receiver Array -- 10.3 Multichannel Communication System Design -- 10.4 Stripmap Synthetic Aperture Radar -- 10.5 Radar Detection Performance -- 10.6 Conclusions -- 10.7 Problems -- References -- Appendix 10A Excel Spreadsheet for the LFOV Array -- Appendix 10B Scilab Code for the Communication System Receiver Array -- Appendix 10C Scilab Code for the Stripmap SAR Simulation -- Appendix 10D Gaussian ROC Curve Derivation -- 11 Advanced Development Activities for Phased Arrays -- 11.1 Introduction -- 11.2 System Risk Management -- 11.3 Advanced Development Activities -- 11.4 Types of Advanced Development Risk Reduction Activities -- 11.5 Typical Risks in Phased Array Development -- 11.6 Advanced Development Impacts All Levels of the System -- 11.7 Other Risk Analysis Topics. 327 $a11.8 Conclusions -- 11.9 Problems -- References -- 12 Conclusions -- About the Authors -- Index. 330 3 $aPhased arrays, while traditionally used in radar systems, are now being used or proposed for use in internet of things (IoT) networks, high-speed back haul communication, terabit-per-second satellite systems, 5G mobile networks, and mobile phones. This book considers systems engineering of phased arrays and addresses not only radar, but also these modern applications. It presents a system-level perspective and approach that is essential for the successful development of modern phased arrays. Using practical examples, this book helps solve problems often encountered by technical professionals. Thermal management challenges, antenna element design issues, and architectures solutions are explored as well as the benefits and challenges of digital beam forming. This book provides the information required to train engineers to design and develop phased arrays and contains questions at the end of each chapter that professors will find useful for instruction.$cPublisher description. 410 0$aArtech House radar library. 606 $aPhased array antennas$xDesign and construction 615 0$aPhased array antennas$xDesign and construction. 676 $a621.382/4 700 $aSturdivant$b Rick$01504974 702 $aQuan$b Clifton 702 $aChang$b Enson$f1961- 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910793302103321 996 $aSystems engineering of phased arrays$93737999 997 $aUNINA