LEADER 04217oam 2200661I 450 001 9910792091303321 005 20230725021501.0 010 $a1-136-86898-4 010 $a1-283-59045-X 010 $a9786613902900 010 $a0-203-83721-5 010 $a1-136-86899-2 024 7 $a10.4324/9780203837214 035 $a(CKB)2560000000092934 035 $a(EBL)1020348 035 $a(OCoLC)810082610 035 $a(SSID)ssj0000831393 035 $a(PQKBManifestationID)11421077 035 $a(PQKBTitleCode)TC0000831393 035 $a(PQKBWorkID)10873758 035 $a(PQKB)11146479 035 $a(MiAaPQ)EBC1020348 035 $a(Au-PeEL)EBL1020348 035 $a(CaPaEBR)ebr10598631 035 $a(CaONFJC)MIL390290 035 $a(FINmELB)ELB137672 035 $a(EXLCZ)992560000000092934 100 $a20180706d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMathematical economics /$fArsen Melkumian 210 1$aLondon ;$aNew York :$cRoutledge,$d2011. 215 $a1 online resource (232 p.) 300 $aIncludes index. 311 $a0-415-77687-2 311 $a0-415-77686-4 327 $aCover; Mathematical Economics; Copyright; Contents; Preface; Acknowledgements; 1 Introduction; 1.1 Basic set theory; 1.2 Functions from R to R; 2 Fundamental functions and series; 2.1 Power functions; 2.2 Exponents; 2.3 Sequences and series; 2.4 Some rules of summation; 3 Exponential and logarithmic functions; 3.1 Logarithmic function; 3.2 Exponential functions; 3.3 Mathematica examples; 4 Limits and derivatives; 4.1 Limits; 4.2 First- and second-order derivatives; 4.3 The chain rule; 4.4 Total and marginal functions; 4.5 Growth rates; 5 Optimization of univariate functions 327 $a5.1 Local and global extrema5.2 Taylor series; 5.3 Mathematica examples; 6 Matrix algebra; 6.1 Introduction; 6.2 Determinant of a matrix; 6.3 The matrix of cofactors; 6.4 The inverse matrix; 6.5 Systems of linear equations; 7 Further topics in matrix algebra; 7.1 Linear dependence; 7.2 Quadratic forms; 7.3 The Hessian matrix; 7.4 Row echelon form of a matrix; 7.5 The rank of a matrix; 7.6 Eigenvalues and eigenvectors; 7.7 Kronecker product; 7.8 Vectorization of a matrix; 7.9 Mathematica examples; 7.10 Matlab examples; 8 Optimization of bivariate and multivariate functions 327 $a8.1 The Hessian matrix8.2 Two-variable functions; 8.3 Multivariate functions; 8.4 Optimization with one constraint; 8.5 Matlab example; 9 Indefinite and definite integrals; 9.1 Indefinite integrals; 9.2 Integration by substitution and integration by parts; 9.3 Definite integrals; 9.4 Mathematica examples; 10 Mathematics of finance; 10.1 Simple interest; 10.2 Compound interest; 10.3 Continuous compounding; 10.4 Effective annual rate; 10.5 Present value; 10.6 Car loans and mortgages; 11 Complex numbers; 11.1 The set of complex numbers; 11.2 Polar and trigonometric form of complex numbers 327 $a11.3 Mathematica examples12 Difference and differential equations; 12.1 Difference equations; 12.2 Differential equations; Answers to odd-numbered problems; Index 330 $aThis textbook, designed for a single semester course, begins with basic set theory, and moves briskly through fundamental, exponential, and logarithmic functions. Limits and derivatives finish the preparation for economic applications, which are introduced in chapters on univariate functions, matrix algebra, and the constrained and unconstrained optimization of univariate and multivariate functions. The text finishes with chapters on integrals, the mathematics of finance, complex numbers, and differential and difference equations.Rich in targeted examples and explanations, Mathematic 606 $aEconomics, Mathematical 606 $aMathematics 615 0$aEconomics, Mathematical. 615 0$aMathematics. 676 $a330.01/51 676 $a330.0151 700 $aMelkumian$b Arsen$f1969-,$01575008 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910792091303321 996 $aMathematical economics$93851674 997 $aUNINA