LEADER 00892nam0-22003011i-450 001 990005073230403321 005 20210916151144.0 035 $a000507323 035 $aFED01000507323 035 $a(Aleph)000507323FED01 035 $a000507323 100 $a19990604g19639999km-y0itay50------ba 101 0 $aeng 105 $ay---n---001yy 200 1 $aOrationis ratio$ethe stylistic theories and practice of the roman orators historians and philosophers$fby A.D. Leeman 210 $aAmsterdam$cA.M. Hakkert$d1963 215 $a2 v.$d25 cm 700 1$aLeeman,$bAnton D.$0171295 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005073230403321 952 $aVI I 57(1)$bBibl. 36985$fFLFBC 952 $aVI I 57(2)$bBibl. 36985$fFLFBC 952 $aXXI A 528$b70402$fFGBC 959 $aFLFBC 959 $aFGBC 996 $aOrationis ratio$953526 997 $aUNINA LEADER 03547nam 2200589Ia 450 001 9910792055603321 005 20230803023704.0 010 $a1-299-28121-4 010 $a981-4390-66-6 035 $a(CKB)2560000000099530 035 $a(EBL)1143300 035 $a(OCoLC)830161963 035 $a(SSID)ssj0000833184 035 $a(PQKBManifestationID)12367388 035 $a(PQKBTitleCode)TC0000833184 035 $a(PQKBWorkID)10935764 035 $a(PQKB)10093160 035 $a(MiAaPQ)EBC1143300 035 $a(WSP)00002892 035 $a(Au-PeEL)EBL1143300 035 $a(CaPaEBR)ebr10674359 035 $a(CaONFJC)MIL459371 035 $a(EXLCZ)992560000000099530 100 $a20120809d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aExistence and stability of Nash equilibrium$b[electronic resource] /$fGuilherme Carmona 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2013 215 $a1 online resource (153 p.) 300 $aDescription based upon print version of record. 311 $a981-4390-65-8 320 $aIncludes bibliographical references and index. 327 $aPreface; Acknowledgements; Contents; 1. Introduction; 2. Continuous Normal-Form Games; 2.1 Notation and Definitions; 2.2 Existence of Nash Equilibria; 2.3 Mixed Strategies; 2.4 Stability of Nash Equilibria; 2.5 Existence of Nash Equilibria via Approximate Equilibria; 3. Generalized Better-Reply Secure Games; 3.1 Generalized Better-Reply Security and Existence of Equilibrium; 3.2 Examples; 3.3 Two Characterizations of Generalized Better-Reply Security; 3.4 Better-Reply Security; 3.5 Sufficient Conditions; 3.6 Mixed Strategies; 3.7 References; 4. Stronger Existence Results 327 $a4.1 Multi-Player Well-Behaved Security4.2 Diagonal Transfer Continuity; 4.3 Generalized C-Security; 4.4 Lower Single-Deviation Property; 4.5 Generalized Weak Transfer Continuity; 4.6 References; 5. Limit Results; 5.1 A General Limit Result; 5.2 Two Characterization of the Limit Problem for ?-Equilibria; 5.3 Sufficient Conditions for Limit Results; 5.4 Existence of ?-Equilibrium; 5.5 Continuity of the Nash Equilibrium Correspondence; 5.6 Strategic Approximation; 5.7 References; 6. Games With an Endogenous Sharing Rule; 6.1 Existence and Stability of Solutions; 6.2 References 327 $a7. Games With a Continuum of Players7.1 Notation and Definitions; 7.2 Existence of Equilibrium Distributions; 7.3 Relationship With Finite-Player Games; 7.4 Proof of the Existence Theorem for Non-atomic Games; 7.5 References; Appendix A Mathematical Appendix; Bibliography; Index 330 $aThe book aims at describing the recent developments in the existence and stability of Nash equilibrium. The two topics are central to game theory and economics and have been extensively researched. Recent results on existence and stability of Nash equilibrium are scattered and the relationship between them has not been explained clearly. The book will make these results easily accessible and understandable to researchers in the field. 606 $aEquilibrium (Economics) 606 $aGame theory 615 0$aEquilibrium (Economics) 615 0$aGame theory. 676 $a519.3 700 $aCarmona$b Guilherme$0520797 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910792055603321 996 $aExistence and stability of Nash equilibrium$9834775 997 $aUNINA