LEADER 01504nam 2200397 n 450 001 996390113503316 005 20221108011249.0 035 $a(CKB)1000000000656881 035 $a(EEBO)2264190420 035 $a(UnM)99872129 035 $a(EXLCZ)991000000000656881 100 $a19850308d1641 uy | 101 0 $aeng 135 $aurbn#|||a|bb| 200 14$aThe speeches of the Lord Digby in the High Court of Parliament, concerning grievances, and the trienniall Parliament$b[electronic resource] 210 $a[London] $cPrinted for Thomas Walkely$d1641 215 $a[2], 25, [3] p 300 $aSpeeches given 9 Nov. 1640 and 19 Jan. 1641. 300 $aPlace of publication from Wing. 300 $aThe first leaf and the last leaf are blank. 300 $aReproduction of original in the Folger Shakespeare Library. 330 $aeebo-0018 606 $aInternal revenue$zEngland$vEarly works to 1800 607 $aGreat Britain$xPolitics and government$y1625-1649$vEarly works to 1800 615 0$aInternal revenue 700 $aBristol$b George Digby$cEarl of,$f1612-1677.$01001102 712 02$aEngland and Wales.$bParliament.$bHouse of Commons. 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bCu-RivES 801 2$bWaOLN 906 $aBOOK 912 $a996390113503316 996 $aThe speeches of the Lord Digby in the High Court of Parliament, concerning grievances, and the trienniall Parliament$92344736 997 $aUNISA LEADER 06941nam 2201837 450 001 9910791958903321 005 20230607230034.0 010 $a0-691-08685-0 010 $a1-4008-3721-9 024 7 $a10.1515/9781400837212 035 $a(CKB)2560000000080615 035 $a(EBL)1756198 035 $a(OCoLC)888743941 035 $a(SSID)ssj0000409570 035 $a(PQKBManifestationID)12146486 035 $a(PQKBTitleCode)TC0000409570 035 $a(PQKBWorkID)10348340 035 $a(PQKB)10999302 035 $a(MiAaPQ)EBC1756198 035 $a(DE-B1597)447972 035 $a(OCoLC)757993359 035 $a(OCoLC)979954343 035 $a(DE-B1597)9781400837212 035 $a(Au-PeEL)EBL1756198 035 $a(CaPaEBR)ebr10909208 035 $a(CaONFJC)MIL637572 035 $a(EXLCZ)992560000000080615 100 $a20140830h20012001 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aTriangulated categories /$fby Amnon Neeman 210 1$aPrinceton, New Jersey :$cPrinceton University Press,$d2001. 210 4$d©2001 215 $a1 online resource (461 p.) 225 1 $aAnnals of Mathematics Studies ;$vNumber 148 300 $aDescription based upon print version of record. 311 0 $a1-322-06321-4 311 0 $a0-691-08686-9 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$t0. Acknowledgements --$t1. Introduction --$tChapter 1. Definition and elementary properties of triangulated categories --$tChapter 2. Triangulated functors and localizations of triangulated categories --$tChapter 3. Perfection of classes --$tChapter 4. Small objects, and Thomason's localisation theorem --$tChapter 5. The category A(S) --$tChapter 6. The category ?x (Sop, Ab) --$tChapter 7. Homological properties of ?x(Sop,?b) --$tChapter 8. Brown representability --$tChapter 9. Bousfield localisation --$tAppendix A. Abelian categories --$tAppendix B. Homological functors into [AB5?] categories --$tAppendix C. Counterexamples concerning the abelian category A(?) --$tAppendix D. Where ? is the homotopy category of spectra --$tAppendix E. Examples of non-perfectly-generated categories --$tBibliography --$tIndex 330 $aThe first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their "ients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories"--the "well generated triangulated categories"--and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics. 410 0$aAnnals of mathematics studies ;$vNumber 148. 606 $aCategories (Mathematics) 610 $aAbelian category. 610 $aAbelian group. 610 $aAdditive category. 610 $aAdjoint functors. 610 $aAdjoint. 610 $aAdjunction (field theory). 610 $aAssociative property. 610 $aAxiom. 610 $aBasis (linear algebra). 610 $aBijection. 610 $aBiproduct. 610 $aBrown's representability theorem. 610 $aCardinal number. 610 $aCardinality. 610 $aCategory of abelian groups. 610 $aChain complex. 610 $aClass (set theory). 610 $aCohomology. 610 $aComputation. 610 $aCoproduct. 610 $aCorollary. 610 $aCountable set. 610 $aCounterexample. 610 $aDerived category. 610 $aDerived functor. 610 $aDiagram (category theory). 610 $aDirect limit. 610 $aDirect sum. 610 $aDiscrete valuation ring. 610 $aDuality (mathematics). 610 $aEmbedding. 610 $aEquivalence class. 610 $aEquivalence of categories. 610 $aExact functor. 610 $aExact sequence. 610 $aExistence theorem. 610 $aExistential quantification. 610 $aFactorization. 610 $aFinitely generated abelian group. 610 $aFunctor category. 610 $aFunctor. 610 $aGrothendieck category. 610 $aGrothendieck's Tôhoku paper. 610 $aGroup homomorphism. 610 $aHomological algebra. 610 $aHomotopy category of chain complexes. 610 $aHomotopy category. 610 $aHomotopy colimit. 610 $aHomotopy. 610 $aI0. 610 $aInjective function. 610 $aInjective object. 610 $aInteger. 610 $aIsomorph. 610 $aIsomorphism class. 610 $aJack Morava. 610 $aK-theory. 610 $aLimit (category theory). 610 $aLimit of a sequence. 610 $aLimit ordinal. 610 $aLinear map. 610 $aMapping cone (homological algebra). 610 $aMathematical induction. 610 $aMaximal ideal. 610 $aModule (mathematics). 610 $aMonomorphism. 610 $aMoore space. 610 $aMorphism. 610 $aN0. 610 $aNatural transformation. 610 $aOpen set. 610 $aPartially ordered set. 610 $aPierre Deligne. 610 $aPrime number. 610 $aProjective object. 610 $aProportionality (mathematics). 610 $aQuotient category. 610 $aRegular cardinal. 610 $aRepresentable functor. 610 $aSheaf (mathematics). 610 $aSpecial case. 610 $aSpectral sequence. 610 $aSubcategory. 610 $aSubobject. 610 $aSubsequence. 610 $aSubset. 610 $aSuccessor ordinal. 610 $aSummation. 610 $aTautology (logic). 610 $aTensor product. 610 $aTheorem. 610 $aTheory. 610 $aTopological group. 610 $aTransfinite induction. 610 $aTransfinite. 610 $aTriangulated category. 610 $aUniversal property. 610 $aVector space. 610 $aVladimir Voevodsky. 610 $aYoneda lemma. 615 0$aCategories (Mathematics) 676 $a512/.55 700 $aNeeman$b Amnon$066456 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910791958903321 996 $aTriangulated categories$9967043 997 $aUNINA